Impedance-Based Method for Predictive Stability Assessment
A Review
DOI:
https://doi.org/10.52825/zukunftsnetz.v1i.1041Keywords:
Harmonics, Stability Criterion, Impedance Spectroscopy, Grid Impedance Measurement, Grid Connection Assessment, PV Power PlantsAbstract
Impedance-based analysis methods enable a more specific and earlier foundation for assessing harmonic stability in decentralized converter-based power plants compared to the conventional compliance testing in the grid connection process. Essentially, they can be implemented as black-box model approaches without the necessity to disclose internal control models. Initially, only knowledge of the input impedances of the planned grid connection point and the planned PV system is required for application. For this purpose, the method of impedance spectroscopy for inverters has already been developed as a means to determine the effective impedance profile and the internal harmonic sources of inverters, allowing for the description of the frequency-dependent behavior of individual units. The time- and frequency-dependent grid impedance at the grid connection point (GCP) has also been successfully measured in several campaigns on medium and low-voltage grids. Through the coordinated application of both measurement methods, a predictive harmonic assessment is intended in the future, ensuring high planning reliability and grid quality even in grids with a high penetration of power electronics-coupled systems. This paper provides an overview of the current state of research on impedance-based stability criteria and presents measurement methods for practical implementation. Furthermore, it outlines remaining open questions until application in the field.
Downloads
References
J. Gartner, N. A. Müller und B. Engel, „Impact of Harmonics above the 50th Order on the Industrial Grid due to Electric Vehicles in an Employee Parking Lot,“ in ETG Congress 2023, Kassel, 2023.
ENTSO-E, „High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters, Technical Report,“ ENTSO-E Technical Group on High Penetration of Power Electronic Interfaced Powser Sources, 2020.
BMWK, „Roadmap Systemstabilität, Fahrplan zur Erreichung eines sicheren und robusten Betriebs des zukünftigen Stromversorgungssystems mit 100 % erneuerbaren Energien,“ Bundesministerium für Wirtschaft und Klimaschutz (BMWK), Berlin, 2023.
Projektkonsortium Netzharmonie, „Optimierte Effizienz und Netzverträglichkeit bei der Integration von Erzeugungsanlagen aus Oberschwingungssicht: Abschlussbericht für das Projekt NetzHarmonie,“ FGW, Berlin, 2019. DOI: https://doi.org/10.2314/KXP:1671617738
J. Schräder, M. F. Meyer, P. Möbius und D. Schulz, „Optimierte Netzanschlussbewertung von Erneuerbaren Energieanlagen durch die Bewertung von Oberschwingungsemissionenmittels zeit- und frequenzabhängiger Netzimpedanzmessungen,“ in Hamburger Beiträge zum Technischen Klimaschutz 3, Hamburg, 2021. DOI: https://doi.org/10.24405/13957
F. Ackermann, N. Bihler und S. Rogalla, „Stability prediction and stability enhancement for large-scale PV Power plants,“ in IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, 2016. DOI: https://doi.org/10.1109/PEDG.2016.7527017
J. Enslin und P. Heskes, „Harmonic interaction between a large number of distributed power inverters and the distribution network,“ in IEEE Transactions on Power Electronics vol. 4, no.6, 2004. DOI: https://doi.org/10.1109/TPEL.2004.836615
DIN EN 50160, Merkmale der Spannung in öffentlichen Elektrizitätsversorgungsnetzen, 2020.
VDE AR-N 4110, Technische Regeln für den Anschluss von Kundenanlagen an das Mittelspannungsnetz und deren Betrieb (TAR Mittelspannung), 2018.
S. Rogalla, F. Ackermann, N. Bihler und O. Stalter, „Source-driven and Resonance-driven Harmonic Interaction between PV Inverters and the Grid,“ in IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, 2016. DOI: https://doi.org/10.1109/PVSC.2016.7749844
K. M. Boroujeni, F. Safargholi und K. Malekian, „Distinction Between "Destructive" and "Constructive" Harmonic Currents to the Voltage Quality,“ in TechRxiv. Preprint, https://doi.org/10.36227/techrxiv.19299479.v1, 2022.
R. J. Bravo, „Solar PV Power Plants Harmonics Impacts,“ in IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, 2018. DOI: https://doi.org/10.1109/TDC.2018.8440264
C. Henderson, A. Egea-Alvarez, T. Kneuppel, G. Yang und L. Xu, „Grid Strength Impedance Metric: An Alternative to SCR for Evaluating System Strength in Converter Dominated Systems,“ in IEEE Transactions on Power Delivery, 2023. DOI: https://doi.org/10.1109/TPWRD.2022.3233455
F. Safargholi, K. Malekian und W. Schufft, „"Voltage-Current Ratio Difference" Concept for identifying the dominant harmonic cource,“ in Elsevier Electrical Power and Energy Systems, 2020. DOI: https://doi.org/10.1016/j.ijepes.2020.106147
F. Safargholi, K. M. Boroujeni und F. Santjer, „Voltage-Current Ratio Difference Method: Recommended for IEEE Standard 1547to Determine the Customer Harmonic Contribution,“ in IEEE 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, 2022. DOI: https://doi.org/10.1109/ICHQP53011.2022.9808697
J. Sun, „Impedance-Based Stability Criterion for Grid-Connected Inverters,“ IEEE Transactions on Power Electronics, vol. 26, no. 11, 2011. DOI: https://doi.org/10.1109/TPEL.2011.2136439
S. Rogalla, S. Kaiser, B. Burger und B. Engel, „Determination of the Frequency Dependent Thévenin Equivalent of Inverters Using Differential Impedance Spectroscopy,“ in IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, 2020. DOI: https://doi.org/10.1109/PEDG48541.2020.9244380
Y. Liao und X. Wang, „General Rules of Using Bode Plots for Impedance-Based Stability Analysis,“ in IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, 2018. DOI: https://doi.org/10.1109/COMPEL.2018.8460168
N. Cifuentes, M. Sun, R. Gupta und B. C. Pal, „Black-Box Impedance-Based Stability Assessment of Dynamic Interactions Between Converters and Grid,“ in IEEE Transactions on Power Systems vol. 37, no. 4, 2021. DOI: https://doi.org/10.1109/TPWRS.2021.3128812
M. Buchner und K. Rudion, „New Method for Evaluating the Stable Operation of Inverters in the Planning Phase using Impedance-Based Stability Criterion,“ in CIRED Conference, 2021. DOI: https://doi.org/10.1049/icp.2021.1839
S. Shah, P. Koralewicz, V. Gevorgian, H. Liu und J. Fu, „Impedance Methods for Analyzing Stability Impacts of Inverter-Based Resources: Stability Analysis Tools for Modern Power Systems,“ in IEEE Electrification Magazine vol. 9, no. 1, 2021. DOI: https://doi.org/10.1109/MELE.2020.3047166
F. Blaabjerg, R. Teodorescu, M. Liserre und A. Timbus, „Overview of control and grid synchronization for distributed power generation systems,“ in IEEE Transaction on Industrial Electronics, 2006. DOI: https://doi.org/10.1109/TIE.2006.881997
S. Rogalla, S. Kaiser, B. Burger und B. Engel, „Measured Impedance Characteristics of Solar Inverters up to 1 MW,“ in 10th Solar & Storage Integration Workshop, 2020. DOI: https://doi.org/10.24406/publica-fhg-409603
B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli und Z. Shen, „D-Q Impedance Specification for Balanced Three-Phase AC Distributed Power System,“ in IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015. DOI: https://doi.org/10.1109/APEC.2015.7104741
C. M. Wildrick, F. C. Lee, B. H. Cho und B. Choi, „A Method of Defining the Load Impedance Specification for A Stable Distributed Power System,“ in IEEE Transactions on Power Electronics, vol. 10, no. 3, 1993. DOI: https://doi.org/10.1109/PESC.1993.472017
R. Luhtala, T. Roinila und T. Messo, „Implementation of Real-Time Impedance-Based Stability Assessment of Grid-Connected Systems Using MIMO-Identification Techniques,“ in IEEE Transactions on Industy Applications vol. 54, no. 5 , 2018. DOI: https://doi.org/10.1109/TIA.2018.2826998
T. Messo, R. Luhtala, T. Roinila, D. Yang, X. Wand und F. Blaabjerg, „Real-Time Impedance-Based Stability Assessment of Grid Converter Interactions,“ in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, 2017. DOI: https://doi.org/10.1109/COMPEL.2017.8013384
M. Li, X. Zhang, Z. Guo, J. Wang, Y. Wang, F. Li und W. Zhao, „The Control Strategy for the Grid-Connected Inverter Through Impedance Reshaping in q-Axis and its Stability Analysis Under a Weak Grid,“ in IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 9, no. 3, 2021. DOI: https://doi.org/10.1109/JESTPE.2020.3024863
Projektkonsortium NEW 4.0, „Abschlussbericht zum SINTEG-Schaufenster New 4.0 Norddeutsche Energiewende 4.0,“ Hochschule für angewandte Wissenschaften, Hamburg, 2021.
R. Stiegler, S. Schori, K. Scheida, J. Drapela und T. Hanzlik, „Survey of network impedance in the frequency range 2-9 kHz in public low voltage networks in AT/CH/CZ/GE,“ in 25th International Conference on Electricity Distribution, CIRED 2019, Madrid, 2019.
Z. Wu, H. Han, J. Lin, S. Xie, Y. Sun, Z. Tang und F. Blaabjerg, „Admittance-Based Stability Analysis of Resistance - Emulating Controlled Grid-Connected Voltage Sources Rectifiers,“ in IEEE Transactions on Industrial Electronics vol. 70, no. 10, 2023. DOI: https://doi.org/10.1109/TIE.2022.3222689
C. Li, M. Molinas, O. B. Fosso, N. Qin und L. Zhu, „A Data-driven Approach to Grid Impedance Identification for Impedance-based Stability Analysis under Different Frequency Ranges,“ in IEEE Milan PowerTech, Milan, 2019. DOI: https://doi.org/10.1109/PTC.2019.8810402
G. Kaatz, M. F. Meyer, F. Grumm, D. Schulz, F. Safargholi, M. Hoven und S. Adloff, „Impedance Frequency Modelling based on Grid Data for the Prediction of Harmonic Voltages,“ in IEEE NEIS Conference, Hamburg, 2018.
Y. Hu, S. Bu, B. Zhou, Y. Liu und C.-W. Fei, „Impedance-Based Oscillatory Stability Analysis of High Power Electronics-Penetrated Power Systems - A Survey,“ in IEEE Access vol. 7, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2937395
L. Fan, Z. Miao, S. Shah, Y. Cheng, J. Rose, S.-H. Huang, B. Pal, X. Xie, N. Modi, S. Wang und S. Zhu, „Real-Worls 20-Hz IBR Subsynchronous Oscillations: Signatures and Mechanism Analysis,“ in IEEE Transactions on Energy Conversion vol. 37, no. 4, 2022. DOI: https://doi.org/10.1109/TEC.2022.3206795
J. Song, M. Cheah-Mane, E. Prieto-Araujo, J. Amorós und O. Gomis-Bellmunt, „Grid Equivalent Representation of Power Systems With Penetration of Power Electronics,“ in IEEE Transactions on Power Delivery, 2023. DOI: https://doi.org/10.1109/TPWRD.2023.3256440
S. Jiang und G. Konstantinou, „Impedance-Based Stability Analysis: Nodal Admittance or Bus Admittance?,“ in IEEE Transactions on Power Systems, 2023. DOI: https://doi.org/10.1109/TPWRS.2023.3267504
L. Orellana, L. Sainz, E. Prieto-Araujo, M. Cheah-Mané, H. Mehrjerdi und O. Gomis-Bellmunt, „Study of black-box models and participation factors for the Positive-Mode Damping stability criterion,“ in International Journal of Electrical Power & Energy Systems vol. 148, 2023. DOI: https://doi.org/10.1016/j.ijepes.2023.108957
S. Shah, W. Yan, P. Koralewicz, E. Mendiola und V. Gevorgian, „A reversed impedance-based stability criterion for IBR grids,“ in 21st Wind & Solar Integration Worshop (WIW 2022) , The Hague, 2022. DOI: https://doi.org/10.1049/icp.2022.2750
E. Kaufhold, J. Meyer, J. Myrzik und P. Schegner, „Framework to assess the stable operation of commercially available single-phase inverters for photovoltaic applications in public low voltage networks,“ in 21th International Conference on Renewable Energies and Power Quality (ICREPQ`23), Madrid, 2023. DOI: https://doi.org/10.24084/repqj21.275
S. Shah, P. Koralewicz, V. Gevorgian und R. Wallan, „Impedance Measurement of Wind Turbines Using a Multimegawatt Grid Simulator,“ in 18th Wind Integration Workshop, Dublin, 2019.
S. Shah und L. Parsa, „Impedance-Based Prediction of Distortions Generated by Resonance in Grid-Connected Converters,“ in IEEE Transactions on Energy Conversion vol. 34, no. 3, 2019. DOI: https://doi.org/10.1109/TEC.2019.2904674
S. Shah, P. Koralewicz, V. Gevorgian, R. Wallen, K. Jha, D. Mashtare, R. Burra und L. Parsa, „Large-Signal Impedance-Based Modeling and Mitigation of Resonance of Converter-Grid Systems,“ in IEEE Transactions on Sustainable Energy vol. 10, no. 3, 2019. DOI: https://doi.org/10.1109/TSTE.2019.2903478
S. Shah, P. Koralewicz, V. Gevorgian und R. Wallen, „Sequence Impedance Measurement of Utility-Scare Wind Turbines and Inverters - Reference Frame, Frequency Coupling, and MIMO/SISO Forms,“ in IEEE Transactions on Energy Conversion vol. 37, no. 1, 2021.
R. Stiegler, J. Meyer, P. Schegner und D. Chakravorty, „Measurement of network harmonic impedance in presence of electronic equipment,“ in IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, 2015. DOI: https://doi.org/10.1109/AMPS.2015.7312737
M. F. Meyer, G. Kaatz, F. Grumm, M. Plenz und D. Schulz, „Analytical Cable Impedance Modeling Based on Measurement Results,“ in NEIS 2019; Conference on Sustainable Energy Supply and Energy Storage Systems, Hamburg, 2019.
M. F. Meyer, F. Grumm, M. Plenz und D. Schulz, „Determination of a Frequency-Dependent Open Circuit Transformer Model through Grid Impedance Measurements,“ in NEIS 2020; Conference on Sustainable Energy Supply and Energy Storage Systems, Hamburg, 2020.
H. Langkowski, M. Jordan, T. Do und D. Schulz, „Spectral Grid Impedance Identification on Different Voltge Levels - Challenges and Realization,“ in IEEE Power & Energy Society General Meeting, Chicago, 2017. DOI: https://doi.org/10.1109/PESGM.2017.8274683
M. Jordan, F. Grumm, G. Kaatz, M. F. Meyer, H. Wilken und D. Schulz, „Online Network Impedance Spectrometer for the Medium-Voltage Level,“ in IEEE International Conference on Enviroment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, 2018. DOI: https://doi.org/10.1109/EEEIC.2018.8494432
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Johannes Schräder, Sebastian Kaiser, Michael Jordan, Detlef Schulz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-04-09
Published 2024-05-16
Funding data
-
Bundesministerium für Wirtschaft und Klimaschutz
Grant numbers 03EI4060C