
Tagung Zukünftige Stromnetze | Future Power Grids Conference 2024 

The Structure of the Future Energy System 

https://doi.org/10.52825/zukunftsnetz.v1i.1041 

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License 

Published: 16 May 2024 

Impedance-Based Method for Predictive Stability 
Assessment 

A Review 

Johannes Schräder1 , Sebastian Kaiser2, Michael Jordan3, and Detlef Schulz1

1Helmut Schmidt University, Germany 
2Fraunhofer-Institut for Solar Energy Systems ISE, Germany 

3morEnergy GmbH, Germany 

Abstract. Impedance-based analysis methods enable a more specific and earlier foundation 
for assessing harmonic stability in decentralized converter-based power plants compared to 
the conventional compliance testing in the grid connection process. Essentially, they can be 
implemented as black-box model approaches without the necessity to disclose internal control 
models. Initially, only knowledge of the input impedances of the planned grid connection point 
and the planned PV system is required for application. For this purpose, the method of 
impedance spectroscopy for inverters has already been developed as a means to determine 
the effective impedance profile and the internal harmonic sources of inverters, allowing for the 
description of the frequency-dependent behavior of individual units. The time- and frequency-
dependent grid impedance at the grid connection point (GCP) has also been successfully 
measured in several campaigns on medium and low-voltage grids. Through the coordinated 
application of both measurement methods, a predictive harmonic assessment is intended in 
the future, ensuring high planning reliability and grid quality even in grids with a high 
penetration of power electronics-coupled systems. This paper provides an overview of the 
current state of research on impedance-based stability criteria and presents measurement 
methods for practical implementation. Furthermore, it outlines remaining open questions until 
application in the field. 
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1. Introduction

Harmonics induced by the pulsed operation of power electronics-coupled consumers and 
sources in the grid are becoming an increasingly prominent issue [1, 2]. Limiting these 
harmonics is a crucial goal in the transformation of our electrical energy system [3]. Unlike 
conventional large power plants, PV power plants are constructed from a multitude of 
generating units. The electrical characteristics at the GCP primarily result from the technical 
properties of the employed inverters and their interactions. Furthermore, internal power cabling 
and transformers play a decisive role in this context. To date, standardization does not offer 
adequate solutions for the stability and harmonic analysis of such complex systems connected 
to the grid [4, 5]. This is evidenced, among other factors, by undesired resonance effects or 
high harmonic distortion levels that persist despite comprehensive grid connection 
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procedure [6, 7]. Approaches to solve this issue promise impedance-based methods, which 
enable a predictive assessment of harmonic stability. The impedance-based stability criterion 
is the subject of research in numerous fields and will be explained hereinafter using PV power 
plants as an example, presenting the current state of the technology in this regard. 

2. Voltage Quality and Stability 

Ensuring voltage quality compliance according to DIN EN 50160 is verified during the grid 
connection process when connecting new installations to the public grid [8, 9]. Particularly in 
the conformity assessment of network impacts due to the emission of harmonics into the grid, 
assumptions are made that often inadequately or incorrectly describe system behavior, 
potentially leading to incorrect evaluations in the assessment [5, 10, 11, 12, 13]. Some of these 
highly simplified assumptions include: 

 inverter behave like ideal harmonic sources, 
 phase information is not considered during the characterization, 
 emitted harmonic currents are always destructive, 
 the behavior of the power plant can be described by the linearized behavior of the 

generating units based on the planned plant capacity, 
 the qualitative profile of the network impedance spectrum is generally standardized and 
 the harmonics affecting the inverters in the grid cannot be accounted for. 

Methods such as the „Voltage-Current Ratio Difference Method“ take a step further by 
enabling the attribution of both the cause of harmonic currents at the interconnection point of 
the system or the grid and the identification of dominant sources [14, 15]. The procedure, 
however, relies further on the premise that the installation has already been constructed to 
consider coupling effects between units, thus rendering it unsuitable as a predictive method. 
Simulative methods for evaluating the frequency-dependent robustness of the network, which 
extend beyond a linearized assessment of short-circuit power, are also under current 
investigation [13]. A controller-based stability assessment allows for the simulation-based 
detection of grid instability in grid-tied renewable energy resources during the planning phase. 
However, these methods require precise information regarding the design of the renewable 
energy resource and the planned network connection point, which are often unavailable. An 
alternative approach is provided by impedance-based stability assessments [16]. 

2.1 Impedance-Based Stability Criterion 

In stability assessments of grid-tied power plants involving Renewable Energy Sources (RES), 
a fundamental distinction can be made between source-driven and resonance-driven 
harmonics. Impedances and harmonic sources must be considered in a frequency-dependent 
manner in both cases. 

 Source-driven harmonics arise from the current flow due to the voltage difference and 
the combined impedance of both sources (grid and RES). These source-driven harmonic 
currents are limited by the power of the voltage sources and the non-zero impedance of the 
grid. Nevertheless, they can still cause significant voltage distortions [10]. In order to assess 
interactions, it is essential to understand the internal harmonic sources of the planned RES 
before connecting them to the grid. Through differential impedance spectroscopy, both the 
internal harmonic sources and the input impedances of the RES can be determined using 
measurement techniques [17]. 

 Significantly large harmonic currents can arise when the sum of the impedances of the 
grid and the RES approaches zero. This scenario occurs when the magnitudes of the 
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impedances are equal but with a phase shift of 180° (e.g., a capacitive inverter and an inductive 
grid). Even very small harmonic sources in the system can lead to resonance oscillations and, 
in the worst-case scenario, cause damage to the RES and other components [10]. 

 To detect such resonance effects, current research is investigating the application of 
impedance-based stability criteria [16, 17, 18, 19, 20].  

 Unlike controller-based stability assessments, impedance-based stability evaluations 
do not require precise information about the design of the RES. The stability condition can be 
checked solely based on the input impedance of the RES and the network impedance [16]. 
Both systems are initially characterized as frequency-dependent Thevenin or Norton 
equivalent circuit diagrams (ECDs) for this purpose. A conversion between these two ECDs is 
feasible [10]. 

 

Figure 1. Small-signal equivalent circuit for stability analysis of an inverter-based system connected to 
the grid. 

Possible measurement methods for determining the parameters of the ECDs are 
presented in this paper.  

 The impedance-based stability criterion represents a specific application of stability 
conditions derived from linear control theory [16, 21]. The grid is fundamentally characterized 
as a real voltage source. Conversely, photovoltaic (PV) RES are often controlled as current 
sources [16, 22]. Their internal harmonic sources, on the other hand, behave like voltage 
sources [17, 23]. Figure 1 depicts the small-signal ECD for assessing the stability of a grid-
following PV inverter connected to the grid. 

𝐼(𝑓) =
𝐼𝑃𝑉(𝑓) ∙ 𝑍𝑃𝑉(𝑓)

𝑍𝑃𝑉(𝑓) + 𝑍𝑔(𝑓)
−

𝑉𝑔(𝑓)

𝑍𝑃𝑉(𝑓) + 𝑍𝑔(𝑓)
 

(1) 

𝐼(𝑓) = [𝐼𝑃𝑉(𝑓) −
𝑉𝑔(𝑓)

𝑍𝑃𝑉(𝑓)
] ∙

1

1 +
𝒁𝒈(𝒇)

𝒁𝑷𝑽(𝒇)

 
(2) 

The output current of the inverter is calculated according to the ECD using formula (1) 
and can be rearranged following equation (2). It is assumed fundamentally that each source is 
individually stable when unloaded. The stability of the inverter connected to the grid is therefore 
contingent upon the right term in equation (2). This resembles the closed-loop transfer function 
of a negatively feedback-controlled system, where the feedback gain is Zg/ZPV. In accordance 
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with linear control theory, the closed-loop transfer function is stable if the feedback gain 
satisfies the specific Nyquist stability criterion [16].  

 The impedance-based stability criterion is verified by examining the quotient of the grid 
input impedance Zg and the inverter input impedance ZPV. The Nyquist stability criterion can 
be assessed in the Nyquist plot at the location -1 on the abscissa, which must neither be 
crossed nor encircled to fulfill the criterion. Additionally, verification can be conducted in the 
Bode diagram, commonly used to represent the frequency-dependent impedance of electrical 
energy systems. In reference [18], four general rules are graphically presented to illustrate the 
application of the impedance-based stability criterion in the Bode diagram for this purpose. 
However, this work is limited to depicting the quotient already calculated from the grid and RES 
impedances. In reference [17], the criterion is examined at the intersections of both 
impedances in the Bode diagram. This approach is particularly suitable for determining phase 
margins towards the critical point. Laboratory examinations of the impedance-based stability 
criterion have already demonstrated the relationship between low phase and gain margins 
towards the critical point and increased harmonic currents and voltages at the Point of 
Common Coupling (PCC) for the respective frequency ranges [17, 24]. This relationship also 
leads to the introduction of so-called „forbidden regions” [24, 25]. These regions are intended 
to ensure sufficient phase and gain margins, thereby ensuring stable operation at all times. 

2.2 Added Value of Impedance-Based Grid Connection Planning 

By using appropriate measuring instruments, this assessment method offers the potential for 
a more precise understanding of the grid connection point and the characterization of RES, as 
well as their interactions, without the need to disclose proprietary information. Harmonic 
stability can be predicted and evaluated, unlike in traditional compliance tests. This predictive 
assessment allows for the utilization of existing transmission capacities that have previously 
remained unused due to conservative estimations as per the Technical Connection Rules 
(TAR) Medium Voltage 5.4.4. [5, 16]. Likewise, countermeasures can be planned more 
precisely and calculated earlier in the plant design process. Moreover, even in existing 
facilities, the assessment method utilizing plant and grid impedance measurements can be 
employed to identify causes of unintended electromagnetic compatibility (EMC) issues [26, 
27]. Source-driven harmonics due to internal harmonic sources within the RES can be 
specifically filtered out. Resonance-based harmonics, identified using the impedance-based 
stability criterion, can be avoided by adjusting the input impedance of the RES. This impedance 
is primarily influenced by the current control of the controller in the lower frequency range and 
by the passive output filter in the higher frequency range [17]. This allows for improving voltage 
quality through cost-effective adjustments using Impedance Shaping. For instance, voltage 
quality can be enhanced through software-based modifications to the current control system 
[28]. 

3. Previous Applications of Impedance-Based Methods 

The consensus in research is that new methods are necessary to ensure high voltage quality, 
particularly amidst the energy transition and the extensive expansion of renewable energy 
facilities and storage systems [4, 29]. Different approaches have been proposed in this regard. 
For instance, in [30], an approach based on extensive measurement campaigns at the low-
voltage level is presented for determining harmonic current limits between 2 and 9 kHz. The 
“Voltage-Current Ratio Difference Method” introduces a technique for identifying the relevant 
sources of harmonic currents [14, 15]. The following analysis primarily focuses on previous 
studies regarding the application of impedance-based methods. 
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 It is noticeable that the current state of research is primarily characterized by partly 
simulation-based investigations and laboratory conditions [31, 32, 28]. Measurement 
campaigns, however, indicate that this assumption, especially for frequencies above 2 kHz, is 
not practical or realistic [30, 33].  

 The modeling of RES for determining impedances poses another challenge, and 
operating-point-dependent (OP-dependent) variations in RES impedance are still being 
overlooked [34, 31, 35]. In [36], a method is introduced that already considers the OP 
dependence of RES. However, it describes the OP dependence using a V/I characteristic 
based on controller regulation and short-circuit current considerations, thereby requiring 
detailed information about these systems. What is not considered in this method is the 
impedance of the RES, which is necessary for the application of the impedance-based stability 
criterion. Moreover, for a practical implementation of the criterion in the field, a distinction must 
be made between the stability of individual Energy Conversion Elements (ECE) and the overall 
Generating Unit (GU) [37, 38, 39]. By measuring the system impedance of the plant and grid 
impedance at the PCC on the medium-voltage level, the impedance-based stability 
assessment could be conducted for the entire GU. However, impedance measurements within 
the plant and of individual ECE enable an internal impedance-based stability assessment. 
Nevertheless, it´s important to note that this criterion alone cannot guarantee stable operation 
or predict resulting harmonics at the PCC for one or more inverters [40, 38]. Factors such as 
internal harmonic voltage sources should complement the stability and harmonic 
current/voltage assessment, thereby expanding and enhancing the procedure [10]. For a 
predictive assessment method, a consideration of the voltage sources of individual inverters 
and an impedance-based stability assessment for the planned power plant at the intended 
GCP would be appropriate. 

 Alongside investigating the root causes and assessing stability, research is also 
exploring solutions to enhance grid quality. Stability is expected to improve through measures 
such as Impedance Shaping or new control approaches aimed at optimized resistance-
emulating control [28, 31]. The impedance of the inverters at the PCC is intended to be 
adjusted by intelligent control, ensuring it forms sufficient phase and gain margins towards the 
critical point when combined with the existing grid impedance. 

 The implementation of the stability criterion for three-phase energy systems represents 
another focal point research [41, 42, 43, 44]. Common transformations used for applying the 
impedance-based stability criterion are DQ-transformations and symmetrical components [34]. 
The choice of transformation method has so far depended on factors such as the background 
of the users and the intended application scenario. For instance, applications as stability 
monitoring systems are being examined [27, 26]. The approach described in [27] involves 
measuring the time-dependent grid impedance during operation by superimposing an 
additional wideband signal on the nominal output current of a three-phase inverter. The stability 
criterion is then directly examined based on the ratio of the measured grid impedance and the 
analytically determined inverter impedance. This allows for an “online” stability control for 
individual ECE. When determined in the DQ system, this approach simplifies the consideration 
of the measured grid impedance in the current regulation of the inverter. However, a challenge 
with this method is still the analytical determination of the inverter impedance, which is 
assumed in this application. Alternatively, this monitoring approach can be complemented in 
advance using differential impedance spectroscopy [34]. However, long-term measurements 
conducted at the medium-voltage level indicate that the time dependency of the grid 
impedance up to 9 kHz is largely cyclically pronounced [33]. Moreover, OP dependencies of 
the inverters and the scaling to the GU level have not been taken into account thus far. 

 In [39], a method for reverse impedance-based stability assessment is introduced. This 
methodology aims to support grid operations by examining the influence of removing individual 
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units on overall stability. Potential scenarios could include technical failure of specific units or 
deliberate shutdown of facilities. 

 Although various applications for utilizing the impedance-based stability criterion are 
being researched, these investigations largely focus on simulations or laboratory-scale 
measurements. A practice-oriented field study using proven measurement methods and 
considering effects such as the time dependence of grid impedance, OP dependencies of 
inverters, and their scaling to the GU level, has not yet been established. 

4. Impedance Measurement Methods 

For the measurement-based determination of the frequency-dependent Thevenin ECDs of the 
inverters and the grid impedance of the GCP, necessary for stability assessment, state-of-the-
art measurement devices already exist. These will be introduced below, accompanied by an 
explanation of the measurement methods. 

4.1 Time- and frequency-dependent grid impedance measurement 

Active impedance measurement methods all rely on exciting the Device Under Test (DUT) and 
precise current and voltage measurements [45]. Random Pulse Width Modulation (rPWM) 
excitation by switching an ohmic load has proven to be a particularly suitable method for rapid 
and mobile determination of impedances and resonances at the PCC [46, 47]. 

 

Figure 2. Schematic representation of the mobile measurement method utilizing rPWM excitation. 

 Figure 2 schematically represents the measurement setup. The measurement device 
is connected to the PCC under examination, and an ohmic load is pseudo-randomly pulsed 
onto the grid via a power electronic switch. The resulting excitation current through the 
measurement device and the voltage response at the PCC are then evaluated in the frequency 
domain using discrete Fourier transformation (DFT). The excitation and response signals 
generated by the rPWM excitation method are characterized by capturing a wide frequency 
spectrum within a single measurement, over a few fundamental cycles. This excitation method 
has been implemented both at the low-voltage and medium-voltage levels, with the technical 
realization of the power electronic circuit differing depending on the voltage level [48]. The 
frequency-dependent grid impedance ZDUT is then calculated according to formula (3) as the 
difference between the open-circuit voltage VDUT and the voltage response Vexc, divided by the 
excitation current Iexc.  
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V
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𝑍NVP(𝑓) =
𝑉DUT(𝑓) − 𝑉exc(𝑓)

𝐼exc
 

 (3) 

The impedance of three-phase or four-phase systems is determined using the method 
of asynchronous grid excitation. Initially, loop impedances equivalent to the single-phase 
measurement principle are measured. Conductor impedances and the symmetrical 
components are subsequently calculated based on a matrix equation system from three 
independent measurements. This process assumes the time invariance of the DUT during the 
measurement of loop impedances [49].  

4.2 Impedance Spectroscopy of inverters 

 

Figure 3. Schematic representation of the differential impedance spectroscopy according to reference 
[15]. 

The differential impedance spectroscopy method determines the effective frequency-
dependent impedance as well as the internal harmonic voltage sources of an inverter [17]. 
Since the DUT, except for grid-forming inverters, typically requires grid voltage for 
synchronization, excitation through a load excitation method is not feasible. Most inverters are 
designed as voltage-following inverters and therefore require grid voltage for synchronization 
initially. The test bench developed for this purpose is schematically illustrated in Figure 3. 

 Initially, the inverter is operated on a grid simulation device. Subsequently, the DUT is 
excited in two independent measurements with a small-signal voltage superimposed on the 
fundamental grid frequency ffundamental. Throughout these measurements, the frequency of the 
excitation signal remains constant while either the phase or amplitude is altered. The resulting 
currents are measured as excitation responses and transformed into the frequency domain. 

 The impedance ZDUT is then determined as the quotient of the differences between both 
voltage and current measurements, as per formula (4).  

𝑍DUT(𝑓) =
𝑉exc2(𝑓) − 𝑉exc1(𝑓)

𝐼exc2(𝑓) − 𝐼exc1(𝑓)
 

(4) 

By sweeping through the frequency range, i.e., performing a frequency sweep of the excitation 
signal up to 10 kHz, a Thevenin equivalent can be calculated sequentially for each excited 
frequency [17].  

 The impedances of various inverter types differ significantly. Inverter impedance 
generally exhibits dependencies on the rated power and filter design. Additionally, the OP, 
clock frequency, and control parameters also influence the impedance spectrum of the 
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inverters [23, 36]. The internal harmonic voltage sources, as per formula (5), can also be used 
as a measure for assessing harmonic emission. 

𝑉DUT(𝑓) =
𝑉exc1(𝑓) ∙ 𝐼exc2(𝑓) − 𝑉exc2(𝑓) ∙ 𝐼exc1(𝑓)

𝐼exc2(𝑓) − 𝐼exc1(𝑓)
 

(5) 

The described test bench enables impedance spectroscopy for converters with a power 
of up to 1 MVA and rated voltages up to 1100 V within a frequency range up to 10 kHz [17].  

4.3 Mobile System Impedance Measurement 

While the previously mentioned measurement methods and test benches have been tested 
and validated in multiple measurement campaigns, there is currently no mobile device 
available for determining system impedances in grid-parallel operation [4, 23, 29].  

 

Figure 4. Schematic representation of the concept for mobile system/plant impedance measurement 
in the field. 

The requirements for a mobile system impedance measurement in the field differ from 
those of the existing measurement methods. Initially, at the PCC, the connection point between 
the GU and the grid, there is a parallel connection between these two systems. By measuring 
with the grid impedance measurement device at the PCC, the internal behavior of a single-port 
equivalent to this parallel connection would be characterized. A testing facility with a powerful 
and highly dynamic AC amplifier, such as the one used for differential impedance 
spectroscopy, would be too large for mobile field applications. 

 The concept presented here for mobile system impedance measurement in the field 
utilizes principles from both methods. A schematic representation of this concept is depicted 
in Figure 4.To stimulate the DUT, an excitation method based on the described grid impedance 
measurement technique is used. By shifting the current measurement towards the DUT 
instead of the excitation unit, the system behavior can be isolated. However, this would result 
in the weak excitation power at the terminals of the DUT, making precise measurement 
impossible without further adjustments. 

 To increase the excitation power, the excitation signal needs to be adjusted. Instead of 
employing a wideband rPWM excitation, which distributes the excitation power across a very 
broad spectrum, discrete frequencies are selectively stimulated using a fixed clock rate. By 
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sweeping through the frequency range, i.e., sweeping the clock frequency, the entire spectrum 
is determined. 

 

Figure 5. Excitation signals in the time and frequency domain: a) rPWM excitation, b) discrete 
excitation. 

Figure 5 presents a comparison between rPWM and discrete excitation in both the time 
and frequency domains. Additionally, the excitation power can be increased by adjusting the 
excitation resistance. However, the use of ohmic resistors is technically limited due to the heat 
losses generated during excitation. Another fundamental modification in the measurement 
concept involves replacing the ohmic excitation load with a resonant circuit. In an ongoing 
research project, the new measurement system is being developed as a prototype for the low-
voltage level. 

5. Summary 

To ensure high voltage quality in a power grid largely reliant on renewable power plants 
coupled with inverters, new evaluation methodologies are required for the grid connection 
process. Impedance-based assessment approaches are considered promising due to their 
straightforward principles and demonstrated efficacy in simulations and laboratory trials. 
However, future considerations must encompass effects known from grid and plant impedance 
measurements. These encompass site-specific resonance points in the grid impedance, 
temporal fluctuations, and OP-dependent impedance behavior of inverters. Presently, 
resonance points in grid impedance and cyclic temporal changes are not accounted for in 
impedance-based grid connection planning. Additionally, the OP dependency of inverter 
impedances and their interactions in the parallel operation of a PV park are of practical 
importance. The development and field testing of such assessment methods are currently 
pending. 

 The necessary instruments for implementing a predictive assessment are elucidated in 
this paper. Employing differential impedance spectroscopy enables the measurement of OP-
dependent internal harmonic sources of individual inverters and their input impedance. 
Additionally, the presented grid impedance measurement device utilizing asynchronous rPWM 
load excitation has been successfully deployed in medium-voltage applications. However, the 
measurement-based determination of plant impedances in grid-parallel operation still poses a 
challenge using these measurement methods. A potential solution concept involves shifting 
the current measurement towards the DUT to isolate and analyze the behavior of the plant. 
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