Static and Dynamic Evaluation of Wind Potential in the Kara Region of Togo Using Artificial Neural Networks
DOI:
https://doi.org/10.52825/thwildauensp.v1i.26Keywords:
Wind power, Weibull distribution, Artificial Neural NetworksAbstract
Togo's energy situation is characterized by a low rate of access to electricity (38.07 % in 2017). In the Kara region, there is certainly a wind potential whose study is necessary for the production of electricity. Thus, from the data recorded each day at intervals of one hour, we used Weibull distribution to evaluate the wind energy potential at 10m and then at 25m, 50m, 75m and 100m. However, the promotion of this source requires not only the knowledge of its potential but also the evolution of its quantity over time because in reality wind energy is confronted with the random nature of the wind. Thus, for the prediction of the wind potential in the region of Kara, we used artificial neural networks. The neural architecture used is a multilayer perceptron with a single neuron under the hidden layer whose activation function is a sigmoid function while the output layer uses a linear function. The prediction results obtained with an average squared error of 0.005 and a correlation of 0.96 show that the prediction results using this tool are acceptable and can be generalized under the same conditions on other sites. The evaluation of the wind potential in the region of Kara has enabled us to determine the amount of total energy available in the wind at different altitudes. Through the average values of wind speeds determined, we could make an optimal choice of wind turbine to convert this kinetic energy of the wind into electrical energy.
Downloads
References
de HERDE JFL, de HERDE H, GERIN A. Wind Energy: What Hybrid Energy to Fill its Defects. 2006;:pp.16.
FICHAUX N. Évaluation du potentiel éolien offshore et imagerie satellitale. École des Mines de Paris, France; 2003.
PHILIPPOPOULOS K, DELIGIORGI D, KARVOUNIS G. Wind Speed Distribution Modeling In The Greater Area Of Chania, Greece. International Journal of Green Energy. 2012;:9 : 174–193. https://doi.org/https://doi.org/10.1080/15435075.2011.622020
PAVIA GE, O'BRIEN JJ. Weibull statistics of wind speed over the ocean. Journal of Climate and Applied Meteorology. 1986;vol. 25:pp. 1324-1332. https://doi.org/https://doi.org/10.1175/1520-0450(1986)025<1324:WSOWSO>2.0.CO;2
GUMBEL JE. Statistics of extremes. Columbia University Press. 1958;:pp. 375.. https://doi.org/https://doi.org/10.7312/gumb92958
Weibull W. A statistical distribution function of wide applicability. Journal of Applied Mechanics. 1951;:n°18, pp. 293-297.
TROEN I, PETERSEN E. European wind atlas. Roskilde. Risoe National Laboratory, I. 1989;.
JENSEN ON, PETERSEN E, TROEN I. World climate applications programme : extrapolation of mean wind statistics with special regard to wind energy applications. World meteorological organization. 1984;WMO/TD-No..
JUSTUS C, HARGRAVES W, YALCIN A. Nationwide assessment of potential ouput from wind-powered generators. Journal of Applied Meteorology. 1976;n°15:pp. 673-678. https://doi.org/https://doi.org/10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2
JUSTUS C, HARGRAVES W, MIKHAIL A, GRABER D. Methods for estimating wind speed frequency distribution. Journal of Applied Meteorology. 1978;n°17:pp. 350-353. https://doi.org/https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2
HENNESSEY J. A comparison of the Weibull and Rayleigh distributions for estimating wind power potential. Wind Engin. 1978;2:156–164.
Merzouk N, Merzouk M. Estimation du Potentiel Energétique Eolien Utilisable- Application au Pompage dans les Hauts Plateaux. Revue des Energies Renouvelables. 2006;Vol. 9, N°:pp. 155 – 163.
Sen Z, Altunkaynak A, Erdik T. Wind Velocity Vertical Extrapolation by Extended Power Law’, Hindawi Publishing Corporation. Advances in Meteorology. 2012;:pp. 6. https://doi.org/https://doi.org/10.1155/2012/178623
HLADIK J. Energétique Eolienne, « Chauffage éolien, Production d’électricité, Pompage. (MASSON, ed). 1984.
LEGOURIERES D. Energie éolienne, théorie, conception et calcul pratique des installations. 2è Edition. (Eyrolles, ed). 1982.
Manyonge A, Ochieng R, Onyango F, Shichikha J. Mathematical Modeling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis. Applied Mathematical Sciences. 2012;Vol. 6, :pp. 4527 – 4536.
MOLIN B. Hydrodynamique des structures offshore. 2002;:pp. 440.
Kalnay E, Lord SJ, McPherson RD. Maturity of Operational Numerical Weather Prediction: Medium Range. Bulletin of the American Meteorological Society. 1998 Dec;79(12):2753-2769. https://doi.org/10.1175/1520-0477(1998)079<2753:moonwp>2.0.co;2
MACHENHAUER B, HIRLAM. Technical Report 5. Copenhagen: Danish Meteorological Institute; 1988.
METATLA S. Optimisation et régulation des puissances d’une éolienne à base d’une MADA. École nationale supérieure polytechnique d’Alger; 2009.
Katz RW, Skaggs RH. On the Use of Autoregressive-Moving Average Processes to Model Meteorological Time Series. Monthly Weather Review. 1981 03;109(3):479-484. https://doi.org/10.1175/1520-0493(1981)109<0479:otuoam>2.0.co;2
Delleur JW, Kavvas ML. Stochastic Models for Monthly Rainfall Forecasting and Synthetic Generation. Journal of Applied Meteorology. 1978 Oct;17(10):1528-1536. https://doi.org/10.1175/1520-0450(1978)017<1528:smfmrf>2.0.co;2
Carlson RF, MacCormick AJA, Watts DG. Application of Linear Random Models to Four Annual Streamflow Series. Water Resources Research. 1970 08;6(4):1070-1078. https://doi.org/10.1029/wr006i004p01070
Makridakis S, Wheelwright SC, McGee VE. Forecasting: Methods and Applications. 2nd. JohnWiley & Sons; 1983.
BOX P, JENKINS M. Times series analysis: forecasting and control. 1976.
Corotis RB, Sigl AB, Cohen MP. Variance Analysis of Wind Characteristics for Energy Conversion. Journal of Applied Meteorology. 1977 Nov;16(11):1149-1157. https://doi.org/10.1175/1520-0450(1977)016<1149:vaowcf>2.0.co;2
BOSSANYI E. Short-term wind prediction using Kalman filters. Wind Energy.9:1-8.
Poggi P, Muselli M, Notton G, Cristofari C, Louche A. Forecasting and simulating wind speed in Corsica by using an autoregressive model. Energy Conversion and Management. 2003 Dec;44(20):3177-3196. https://doi.org/10.1016/s0196-8904(03)00108-0
Kitagawa T, Nomura T. A wavelet-based method to generate artificial wind fluctuation data. Journal of Wind Engineering and Industrial Aerodynamics. 2003 06;91(7):943-964. https://doi.org/10.1016/s0167-6105(03)00037-0
Cadenas E, Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renewable Energy. 2009 01;34(1):274-278. https://doi.org
Kodjo M, Bédja K, Ajavon A, Lishou C. Neural networks for predictive control of the mechanism of orientation of a wind turbine. Journal des Sciences Pour l'Ingénieur . 2008;9.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2021 Arafat Fousseni, Mawugno Koffi KODJO, Assiongbon ADANLETE ADJANOH
This work is licensed under a Creative Commons Attribution 4.0 International License.