SolarPACES Task III Project: Analyze Heliostat Field:
Results of Methodologies Comparison, Gaps to be Filled and Next Steps to Further Improve the Solar Central Receiver Technology
DOI:
https://doi.org/10.52825/solarpaces.v2i.903Keywords:
Heliostat Performance, Heliostat Field, Testing Guideline, Measurement, Characterization, Commissioning, ReliabilityAbstract
In recent years, great efforts have been made to reach a consensus on heliostat testing best practices. A specific SolarPACES task was launched to provide a Heliostat Testing Guidelines document for single heliostat evaluation with a focus on prototype validation and qualification. Such guidelines are not well-suited for heliostat evaluation in operating commercial heliostat fields. The commercial implementation of the Central Receiver technology is burdened by the lack of a demonstrated cost-effective methodology to test solar fields, particularly during the commissioning and operation phases of the plant.
To address heliostat characterization challenges, the SolarPACES funded Project “Analyze Heliostat Field” aims to set the basis towards a SolarPACES guideline for Heliostat Field Performance testing under a common framework. This is by means of a review of the existing methodologies, R&D and industrial stakeholders information sharing and preparation of a future quantitative comparison and validation plan.
As part of the development of this project, several meetings and a workshop involving the SolarPACES community was organized to share knowledge and experience in the measurement and characterization of heliostat fields using a range of technologies and procedures. Research centers and companies from 5 different and distant countries have actively participated in these meetings, sharing their experiences, needs and interests. This paper summarizes the outcome of this international collaborative effort and the prospects for future close collaborations sustained over time.
Downloads
References
1. N.C. Cruz, R. Monterreal, J.L. Redondo, J. Fernandez-Reche, R. Enrique, P.M. Ortigosa, “Optical characterization of heliostat facets based on Computational Optimization”, Sol. Energy 248, 1-15. https://doi.org/10.1016/j.solener.2022.10.043.
2. R.A. Mitchell, G. Zhu, “A non-intrusive optical (NIO) approach to characterize heliostats in utility-scale power tower plants: Methodology and in-situ validation”, 209 (2020), 431-445.
3. A. Peña-Lapuente, S. Escorza, A. Mutuberria, M. Sánchez, J. García-Barberena, C. Heras, and A. Villafranca, “Novel scanner-based methodology for a fast and complete high quality characterization of all solar field heliostats, their facets, and corresponding reflected beams”, Proc. SPIE 12671, Advances in Solar Energy: Heliostat Systems Design, Implementation, and Operation, 1267103 (4 October 2023); https://doi.org/10.1117/12.2677246
4. M. Blanco, K. Milidonis, V. Grigoriev, M. Bonanos, “UAV-based system and method for the characterization of the geometry of solar concentrating mirrors”, WO 2022/234316 A1 – PCT/IB2021/053679, May/2021.
5. S. Ulmer, T. März, C. Prahl, W. Reinalter, B. Belhomme, “Automated high resolution measurement of heliostat slope errors”, Solar Energy, Volume 85, Issue 4, April 2011, Pages 681-687, https://doi.org/10.1016/j.solener.2010.01.010
6. A. Olarra, G. Kortaberria, E. Rodriguez, E. Gomez-Acedo, C. Villasante, “Fast, Compact and Precise Reflector Panel Measurement based on Autocollimation Principle”, Energy Procedia, Vol. 49, 2162-2169, (2014) https://doi.org/10.1016/j.egypro.2014.03.229
7. M. Burisch, M. Sanchez, A. Olarra and C. Villasante, May. “Heliostat calibration using attached cameras and artificial targets”. In AIP Conference Proceedings (Vol. 1734, No. 1). AIP Publishing, 2016
8. W. Jessen, M. Röger, C. Prahl, R. Pitz-Paal, “A Two-Stage Method for Measuring the Heliostat Offset”, SolarPACES 2020. AIP Conference Proceedings 2445, 070005 (2022); https://doi.org/10.1063/5.0087036, Published Online: 12 May 2022.
9. G. Bern, P. Schöttl, A. Heimsath and P. Nitz, “Parallel in-situ measurement of heliostat aim points in central receiver systems by image processing methods”, Solar Energy, 180, pp.648-663, 2019.
10. C. Raeder, M. Offergeld, A. Lademann, D. Meyer, J. Zöller, M. Glinka, M. Röger, A. Kämpgen, J. Escamilla, “Proof of Concept: Real-time Flux Density Monitoring System on external Tube Receivers for Optimized Solar Field Operation”, SolarPACES conference 2021
11. Y. Wang, W. Lipiński, J. Pye, “A method for in situ measurement of directional and spatial radiosity distributions from complex-shaped solar thermal receivers,” Solar Energy, Volume 201, 2020, Pages 732-745, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2020.02.097.
12. M. Röger, K. Blume, T. Schlichting, M. Collins, “Status Update of the SolarPACES Heliostat Testing Activities,” SolarPACES 2020, Online Event (Paper), AIP Conference Proceedings 2445, 070010 (2022); doi: https://doi.org/10.1063/5.0087037
13. M. Röger, K. Blume, T. Schlichting, “Guidelines for Heliostat Testing”, SPIE conference proceedings, 20.-24.08.23, San Diego, CA
14. M. Röger, et al. “Guideline for Heliostat Performance Testing”. In: SolarPACES Task III Guideline. (http://www.solarpaces.org/tasks/. Publication planned in 2023).
15. M. Kiera and W. Schiel, “Measurement and analysis of heliostat images,” J. Sol. Energy Eng. Trans. ASME, vol. 111, no. 1, pp. 2–9, 1989, doi: https://doi.org/10.1115/1.3268283.
16. J. Sattler, M. Röger, P. Schwarzbözl, R. Buck, A. Macke, C. Raeder, J. Göttsche, “Review of Heliostat Calibration and Tracking Control Methods”, Solar Energy 207, 1 September 2020, Pages 110-132, https://doi.org/10.1016/j.solener.2020.06.030.
17. M. Berenguel F.R. Rubio, A. Valverde, P.J. Lara, M.R. Arahal, E.F. Camacho, M. López, “An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant,” Sol. Energy, vol. 76, no. 5, pp. 563–575, 2004, doi: https://doi.org/10.1016/j.solener.2003.12.006.
18. M. Röger, P. Herrmann, S. Ulmer, M. Ebert, C. Prahl, F. Göhring, “Techniques to Measure Solar Flux Density Distribution On Large-Scale Receivers”, J. Sol. Energy Eng. 136(3), 031013 (10 pages), 2014, doi: https://doi.org/10.1115/1.4027261
19. M. Ebert, D. Benitez, M. Röger, R. Korzynietz, J.A. Brioso, “Efficiency determination of tubular solar receivers in central receiver systems”, Solar Energy 139, 2016, pp. 179–189, http://dx.doi.org/10.1016/j.solener.2016.08.047
20. M. Offergeld, M. Röger, H. Stadler, P. Gorzalka, B. Hoffschmidt, “Flux Density Measurement for Industrial-Scale Solar Power Towers Using the Reflection off the Absorber”, AIP Conference Proceedings 2126, 110002 (2019), SolarPACES, Casablanca, 2018, https://doi.org/10.1063/1.5117617
21. T. Schlichting, J. Herrmann, C. Happich, D. Nieffer, P. Hilger, M. Röger, G. Weinrebe, A. Macke, K. Blume, F. Gross, “SolarPACES Heliostat Field Acceptance Guideline”, Version 1.0, 2022, to be distributed in Oct. 2023
22. The University of Adelaide, Centre for Energy Technology, Heliostat Wind Loads, Australian Solar Thermal Research Initiative (ASTRI) Program, https://www.adelaide.edu.au/cet/technologies/heliostat-wind-loads#research-data
23. D. Kearney, “Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines”, Subcontract Report, NREL/SR-5500-57272, United States of America, 2013.
24. G. Zhu, et al., “Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power,” Golden, CO: National Renewable Energy Laboratory, 2022, NREL/TP-5700-83041. https://www.nrel.gov/docs/fy22osti/83041.pdf
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Adrián Peña-Lapuente, Marcelino Sánchez, Charles-Alexis Asselineau, Kenneth Miguel Armijo, Marc Röger, Cristóbal Villasante, Jesús Fernández, Rafael Monterreal, Antonio Ávila-Marín, John Pye, Kypros Milidonis, José Gonzalez-Aguilar, Guangdong Zhu, Steffen Ulmer, Gregor Bern
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-15
Published 2024-09-16