Reduced-Order Modeling of Indirect Fluidized-Bed Particle Receivers with Axial Dispersion

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.899

Keywords:

Bubbling Fluidization, Fluidized Bed, Particle-Wall Heat Transfer, Particle Receivers

Abstract

Oxide particles present a heat transfer and thermal energy storage (TES) media for next-generation concentrating solar power (CSP) plants where the high-temperature particle TES can provide dispatchable solar power [1]. Transferring heat to flowing particles can be a challenge and bubbling fluidization is a promising method for increased heat transfer between the oxide particles and confining walls. Using experimentally calibrated correlations for particle-wall heat transfer coefficients [2], this study explores in a quasi-1D model of a narrow-channel counterflow fluidized bed how the high heat transfer coefficients from bubbling fluidization enable cavity-based indirect particle receivers. Particle-wall heat transfer coefficients exceeding 800 W m-2 K-1 support angled solar fluxes > 200 kW m-2 from high normal fluxes > 1200 kW m-2 with wall temperatures < 900 oC. Parametric studies identify how gas flows, solar fluxes, and receiver heights impact receiver solar efficiency for a CSP plant. These modeling studies provide a basis for the development of an indirect narrow-channel fluidized particle receiver that has the potential to operate at normal solar fluxes over 1000 kW m-2 and solar efficiencies above 85%.

Downloads

Download data is not yet available.

References

M. Mehos et al., “Concentrating Solar Power Gen3 Demonstration Roadmap,” NREL/TP--5500-67464, 1338899, Jan. 2017. doi: https://doi.org/10.2172/1338899.

K. J. Brewster et al., “Particle-wall heat transfer in narrow-channel bubbling fluidized beds for thermal energy storage,” Int. J. Heat Mass Transf., vol. 224, p. 125276, Jun. 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125276.

C. K. Ho, “A review of high-temperature particle receivers for concentrating solar power,” Appl. Therm. Eng., vol. 109, pp. 958–969, Oct. 2016, doi: https://doi.org/10.1016/j.applthermaleng.2016.04.103.

J. R. Fosheim, X. Hernandez, J. Abraham, A. Thompson, B. Jesteadt, and G. S. Jackson, “Narrow-channel fluidized beds for particle-sCO2 heat exchangers in next generation CPS plants,” AIP Conf. Proc., vol. 2445, no. 1, p. 160007, May 2022, doi: https://doi.org/10.1063/5.0085934.

W. Arthur-Arhin et al., “Testing of a 40-kWth Counterflow Particle-Supercritical Carbon Dioxide Narrow-Channel, Fluidized Bed Heat Exchanger,” SolarPACES Conf. Proc., vol. 1, Feb. 2024, doi: https://doi.org/10.52825/solarpaces.v1i.634.

J. Martinek and Z. Ma, “Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver,” J. Sol. Energy Eng., vol. 137, no. 5, p. 051008, Oct. 2015, doi: https://doi.org/10.1115/1.4030970.

D. C. Miller, C. J. Pfutzner, and G. S. Jackson, “Heat transfer in counterflow fluidized bed of oxide particles for thermal energy storage,” Int. J. Heat Mass Transf., vol. 126, pp. 730–745, 2018, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.165.

K. Jiang, X. Du, Q. Zhang, Y. Kong, C. Xu, and X. Ju, “Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies,” Renew. Sustain. Energy Rev., vol. 150, p. 111479, 2021, doi: https://doi.org/10.1016/j.rser.2021.111479.

L. Imponenti, K. J. Albrecht, R. Kharait, M. D. Sanders, and G. S. Jackson, “Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C,” Appl. Energy, vol. 230, pp. 1–18, Nov. 2018, doi: https://doi.org/10.1016/j.apenergy.2018.08.044.

G. S. Jackson et al., “CSP ELEMENTS: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power,” Colorado School of Mines, Golden, CO (United States), DOE-CSM-6537, Nov. 2016. Accessed: Oct. 07, 2023. [Online]. Available: https://www.osti.gov/biblio/1333903

O. Molerus, “Heat transfer in gas fluidized beds part 1.,” Powder Technol., vol. 70, no. 1, pp. 1–14, Apr. 1992, doi: https://doi.org/10.1016/0032-5910(92)85048-Z.

O. Molerus, “Heat transfer in gas fluidized beds part 2. Dependence of heat transfer on gas velocity,” Powder Technol., vol. 70, pp. 15–20, 1992.

A. Le Gal et al., “Thermal analysis of fluidized particle flows in a finned tube solar receiver,” Sol. Energy, vol. 191, pp. 19–33, Oct. 2019, doi: https://doi.org/10.1016/j.solener.2019.08.062.

Mathworks, “MATLAB version 23.2.0.2365128 (R2023b).” The Mathworks, Inc., Natick, Massachusetts, 2023. [Online]. Available: www.mathworks.com

D. G. Goodwin, H. K. Moffat, I. Schoegl, R. L. Speth, and B. W. Weber, “Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes.” 2022. doi: https://doi.org/10.5281/zenodo.6387882.

B. K. Arkhurst, S. A. Brankovic, and others, “Thermophysical Properties Database of Gen3 CSP Materials.” Accessed: Mar. 09, 2023. [Online]. Available: https://gen3csp.gatech.edu/

M. Carter, D. Korba, J. Martinek, Z. Ma, and L. Li, “Thermomechanical Stress and Creep-Fatigue Analysis of a High-Temperature Prototype Receiver for Heating Particles,” presented at the ASME 2023 17th International Conference on Energy Sustainability collocated with the ASME 2023 Heat Transfer Summer Conference, American Society of Mechanical Engineers Digital Collection, Sep. 2023. doi: https://doi.org/10.1115/ES2023-107262.

K. Appaswamy, J. Schirck, C. Punchi Wedikkara, A. Morris, and Z. Ma, “Multiphase Modeling in a Parallel Plate Fluidized Bed Receiver for Concentrating Solar Power,” presented at the ASME 2023 17th International Conference on Energy Sustainability collocated with the ASME 2023 Heat Transfer Summer Conference, American Society of Mechanical Engineers Digital Collection, Sep. 2023. doi: https://doi.org/10.1115/ES2023-106824.

M. Eriksson and M. R. Golriz, “Radiation heat transfer in circulating fluidized bed combustors,” Int. J. Therm. Sci., vol. 44, no. 4, pp. 399–409, Apr. 2005, doi: https://doi.org/10.1016/j.ijthermalsci.2004.11.006.

M. F. Modest, Radiative Heat Transfer. McGraw Hill, 1993.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of Pyromark 2500 Paint for High-Temperature Solar Receivers,” J. Sol. Energy Eng., vol. 136, no. 1, p. 014502, Feb. 2014, doi: https://doi.org/10.1115/1.4024031.

A. J. Banko and J. K. Eaton, “Particle dispersion and preferential concentration in particle-laden turbulence,” in Modeling Approaches and Computational Methods for Particle-Laden Turbulent Flows, Elsevier, 2023, pp. 43–79. doi: https://doi.org/10.1016/B978-0-32-390133-8.00011-6.

N. Mostoufi and J. Chaouki, “Local solid mixing in gas–solid fluidized beds,” Powder Technol., vol. 114, no. 1–3, pp. 23–31, Jan. 2001, doi: https://doi.org/10.1016/S0032-5910(00)00258-8.

R. W. Breault, “A review of gas–solid dispersion and mass transfer coefficient correlations in circulating fluidized beds,” Powder Technol., vol. 163, no. 1, pp. 9–17, 2006, doi: https://doi.org/10.1016/j.powtec.2006.01.009.

Downloads

Published

2024-07-24

How to Cite

Brewster, K. J., Fosheim, J. R., Municchi, F., Arthur-Arhin, W. R., & Jackson, G. S. (2024). Reduced-Order Modeling of Indirect Fluidized-Bed Particle Receivers with Axial Dispersion. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.899

Conference Proceedings Volume

Section

Receivers and Heat Transfer Media and Transport: Point Focus Systems
Received 2023-10-19
Accepted 2024-04-23
Published 2024-07-24

Funding data