Optical Benchmarking of a Novel Polar Bi-Focal Beam-Down Tower Concept
DOI:
https://doi.org/10.52825/solarpaces.v2i.893Keywords:
Central Receiver Solar Tower, Beam-Down, Bi-FocusAbstract
Small-scale modular CSP systems using polar heliostat field arrangements reduce cosine losses significantly and – by integrating a secondary beam-down reflector – enable novel receiver concepts. A novel polar bi-focal beam-down design is introduced and its optical performance is assessed with ray tracing. Albeit not fully optimized, results show that – in comparison to a single-focus beam-down system – the bi-focal system entails higher annual, DNI-weighted optical efficiency and flatter circadian profiles, beneficial for reducing peak dumping. Even higher optical performances can be reached by combining single-focus and bi-focus systems.
Downloads
References
1. Dersch, J.; Binder, M.; Frantz, C.; Giuliano, S.; Gross, F.; Hasselbach, H. et al. (2022): CSP-reference power plant “Made in Germany”. SOLARPACES 2020. AIP Publishing (AIP Conference Proceedings), p. 50003. DOI: https://doi.org/10.1063/5.0085877.
2. Vant-Hull, L. (2014): Issues with Beam-down Concepts. Energy Procedia 49, pp. 257–264. DOI: https://doi.org/10.1016/j.egypro.2014.03.028.
3. Bellos, E. (2023): Progress in beam-down solar concentrating systems. In Prog Energ Combust 97, p. 101085. DOI: https://doi.org/10.1016/j.pecs.2023.101085.
4. Buck, R.; Schwarzbözl, P. (2018): 4.17 Solar Tower Systems. Comprehensive Energy Systems. Elsevier, pp. 692–732. DOI: https://doi.org/10.1016/B978-0-12-809597-3.00428-4.
5. Arbes, F.; Landman, W.; Weinrebe, G.; Wöhrbach, M.; Gebreiter, D.; Estebaranz, J. et al. (2019): Multi tower systems and simulation tools. SOLARPACES 2018. AIP Publishing (AIP Conference Proceedings), p. 30004. DOI: https://doi.org/10.1063/1.5117516.
6. Siala, F.; Elayeb, M. (2001): Mathematical formulation of a graphical method for a no-blocking heliostat field layout. Renewable Energy 23 (1), pp. 77–92. DOI: https://doi.org/10.1016/S0960-1481(00)00159-2.
7. Leonardi, E.; Pisani, L.; Les, I.; Mutuberria, A.; Rohani, S.; Schöttl, P. (2019): Techno-Economic Heliostat Field Optimization: Comparative Analysis of Different Layouts. Solar Energy 180, pp. 601–607. DOI: https://doi.org/10.1016/j.solener.2019.01.053.
8. Schöttl, P.; Bern, G.; Nitz, P.; Torres, F.; Graf, L. (2022): Raytrace3D by Fraunhofer ISE. Accurate and Efficient Ray Tracing for Concentrator Optics. Available online at https://www.ise.fraunhofer.de/content/dam/ise/de/downloads/pdf/raytrace3d.pdf .
9. Schöttl, P.; Ordóñez Moreno, K.; van Rooyen, D.; Bern, G.; Nitz, P. (2016): Novel sky discretization method for optical annual assessment of solar tower plants. Solar Energy 138, pp. 36–46. DOI: https://doi.org/10.1016/j.solener.2016.08.049.
10. METEOTEST (2015): Meteonorm Handbook Part I. Software (Version 7.1 / July 2015). Available online at http://meteonorm.com/images/uploads/downloads/mn71_software.pdf .
11. Noone, C.; Torrilhon, M.; Mitsos, A. (2012): Heliostat field optimization. A new computationally efficient model and biomimetic layout. In Sol Energy 86 (2), pp. 792–803. DOI: https://doi.org/10.1016/j.solener.2011.12.007.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Peter Schöttl, Gregor Bern, Francisco Torres
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-10
Published 2024-09-16
Funding data
-
Bundesministerium für Wirtschaft und Klimaschutz
Grant numbers 03EE5083A