Enhanced Thermal Performance of Nitrate Salts Composite with Compressed Expanded Graphite for Solar Thermal Energy Storage

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.875

Keywords:

Phase Change Materials, Expanded Graphite, Thermal Conductivity, Latent Heat

Abstract

This research endeavors to enhance the performance of nitrate salts by incorporating expanded graphite (EG) to develop efficient and sustainable energy storage solutions tailored for medium-temperature range applications. The targeted domains for application encompass industrial processes, solar cooking, and solar power generation. In order to achieve this, a composite phase change material (PCM) is developed by saturating a compressed expanded graphite (CEG) matrix with molten PCM, and CEG is created by compressing EG to achieve the desired porosity. The primary goal is to leverage expanded graphite's high thermal conductivity to improve the composite PCM's overall heat transfer capabilities. The research involves characterizing the thermal properties of nitrate salts and the composite PCM, including measurements of melting and solidification temperatures, latent heat capacity, and thermal conductivity. These measurements are carried out using established experimental techniques to ensure accuracy and reliability. Notably, the study evaluates the thermo-physical properties of PCM-CEG composites across various temperature ranges of nitrate salts. The findings reveal a significant enhancement in thermal conductivity when expanded graphite is introduced into the composite. Differential scanning calorimetry (DSC) is used to assess the effective latent heat capacity and melting temperature of the PCM-CEG composite. It is observed that the effective latent heat capacity closely corresponds to the mass fraction of PCM in the composite, and the incorporation of graphite does not significantly impact the melting temperature of the PCM.

Downloads

Download data is not yet available.

References

S.J. Wagner, E.S. Rubin, Economic implications of thermal energy storage for concentrated solar thermal power. Renewable Energy 61 (2014) 81–95. doi: https://doi.org/10.1016/j.renene.2012.08.013.

H. Tyagi, A. K. Agarwal, P. R. Chakraborty, S.Powar, (2023). Applications of Solar Energy, Springer. https://www.springerprofessional.de/introduction-to-applications-of-solar-energy/15266690.

R. K. Sharma, P. Ganesan, V. V. Tyagi, H. S. C. Metselaar, S. C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Conversion and Management 95 (2015) 193–228. doi: https://doi.org/10.1016/j.enconman.2015.01.084.

S. Boudaoud, A. Khellaf, K. Mohammedi, O. Behar, Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria, Energy Conversion and Management 89 (2015) 655–664. doi: https://doi.org/10.1016/j.enconman.2014.10.033.

H. Shabgard, T. L. Bergman, N. Sharifi, A. Faghri, High temperature latent heat thermal energy storage using heat pipes, Int J Heat Mass Transfer 53 (2010) 2979–2988. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.035.

R.Tufen, J. P. Petitet, I. Denielou, Le. B. Neindre, Experimental determination of the thermal conductivity of molten pure salts and salt mixtures, Int J Thermophys 6 (1985) 315–330. doi: https://doi.org/10.1007/BF00500266.

Q. Peng, X. Wie, J. Ding, J. Yang, X. Yang, High-temperature thermal stability of molten salt materials, International Journal of Energy Research 32 (12) (2008), 1164-1174. doi: https://doi.org/10.1002/er.1453.

A. Sarı, A. Karaipekli, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable pcm for thermal energy storage, Solar Energy Materials and Solar Cells 93 (5) (2009) 571–576. doi: https://doi.org/10.1016/j.solmat.2008.11.057.

Z. Acem, J. Lopez, E.P. D. Barrio, KNO3/NaNO3–Graphite materials for thermal energy storage at high temperature: Part I. – Elaboration methods and thermal properties, Applied Thermal Engineering 30 (2010) 1580–1595. doi: https://doi.org/10.1016/j.applthermaleng.2010.03.014.

H.L. Zhang, J. Baeyens, J. Degrève, G. Cáceres, R. Segal, F. Pitié, Latent heat storage with tubular encapsulated phase change materials (PCMs), Energy 76 (2014) 66–72. doi: https://doi.org/10.1016/j.energy.2014.03.067.

W. Lu, L. Guizhi, X. Zhibo, W. Zhigen, Z. Guanhua, An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage, Solar energy 195 (2020) 573-580. doi: 10.1016/j.solener.2019.11.102.

X. Py, R. Olives, S. Mauran, Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material, International Journal of heat and mass transfer 44 (14) (2001) 2727–2737. doi: https://doi.org/10.1016/S0017-9310(00)00309-4.

Y. He, Rapid thermal conductivity measurement with a hot disk sensor: Part 1. theoretical considerations, Thermochimica acta 436 (1-2) (2005) 122–129. doi: https://doi.org/10.1016/j.tca.2005.06.026.

Y. He, Rapid thermal conductivity measurement with a hot disk sensor: Part 2. characterization of thermal greases, Thermochimica acta 436 (1-2) (2005) 130–134. doi: https://doi.org/10.1016/j.tca.2005.07.003.

Downloads

Published

2024-07-24

How to Cite

Kumar, N., & Chakraborty, P. R. (2024). Enhanced Thermal Performance of Nitrate Salts Composite with Compressed Expanded Graphite for Solar Thermal Energy Storage. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.875

Conference Proceedings Volume

Section

Thermal Energy Storage Materials, Media, and Systems
Received 2023-10-13
Accepted 2024-04-23
Published 2024-07-24

Funding data