Impact of Temperature and Optical Error on the Combined Optical and Thermal Efficiency of Solar Tower Systems for Industrial Process Heat
DOI:
https://doi.org/10.52825/solarpaces.v2i.866Keywords:
Solar Thermal Tower Systems, Technoeconomic Analysis, Industrial Process HeatAbstract
Concentrating solar thermal (CST) power towers can provide high flux concentrations at commercial scale. As a result, CST towers exhibit potential for high-temperature solar industrial process heat (SIPH) applications. However, at higher operating temperatures, thermal radiation losses can be significant. This study explores the trade-off between thermal and optical losses for SIPH applications using a collection of three case studies at operating temperatures that range from 900-1,550 °C. We assume blackbody radiation to represent the thermal losses at the receiver and we use ray tracing to estimate the optical losses. The results show the impact of process temperature on the maximum attainable system efficiency, as well as the higher flux concentration requirements as the temperature increases.
Downloads
References
G. Zhu, “HelioCon: A roadmap for advanced heliostat technologies for concentrating solar power,” Sol. Energy, vol. 264, p. 111917, Nov. 2023. doi: https://doi.org/10.1016/j.solener.2023.111917.
G. Zhu et al., “Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power,” NREL/TP-5700-83041, Sep. 2022. doi: https://doi.org/10.2172/1888029.
C. A. Schoeneberger, C. A. McMillan, P. Kurup, S. Akar, R. Margolis, and E. Masanet, “Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States,” Energy, vol. 206, p. 118083, Sep. 2020, doi: https://doi.org/10.1016/j.energy.2020.118083.
K. Ravi Kumar, N. V. V. Krishna Chaitanya, and N. Sendhil Kumar, “Solar thermal energy technologies and its applications for process heating and power generation – A review,” J. Clean. Prod., vol. 282, p. 125296, Feb. 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125296.
D. Fernández-González et al., “Concentrated solar energy applications in materials science and metallurgy,” Sol. Energy, vol. 170, pp. 520–540, Aug. 2018, doi: https://doi.org/10.1016/j.solener.2018.05.065.
W. Lipiński et al., “Progress in heat transfer research for high-temperature solar thermal applications,” Appl. Therm. Eng., vol. 184, p. 116137, Feb. 2021, doi: https://doi.org/10.1016/j.applthermaleng.2020.116137.
M. Tomatis, H. K. Jeswani, L. Stamford, and A. Azapagic, “Assessing the environmental sustainability of an emerging energy technology: Solar thermal calcination for cement production,” Sci. Total Environ., vol. 742, p. 140510, Nov. 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.140510.
J.-P. Säck, M. Roeb, C. Sattler, R. Pitz-Paal, and A. Heinzel, “Development of a system model for a hydrogen production process on a solar tower,” Sol. Energy, vol. 86, no. 1, pp. 99–111, Jan. 2012, doi: https://doi.org/10.1016/j.solener.2011.09.010.
F. A. C. Oliveira et al., “Portland cement clinker production using concentrated solar energy – A proof-of-concept approach,” Sol. Energy, vol. 183, pp. 677–688, May 2019, doi: https://doi.org/10.1016/j.solener.2019.03.064.
L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, vol. 206, pp. 1018–1032, Aug. 2020, doi: https://doi.org/10.1016/j.solener.2020.05.088.
M. J. Wagner and T. Wendelin, “SolarPILOT: A power tower solar field layout and characterization tool,” Sol. Energy, vol. 171, pp. 185–196, Sep. 2018, doi: https://doi.org/10.1016/j.solener.2018.06.063.
W. T. Hamilton, M. J. Wagner, and A. J. Zolan, “Demonstrating SolarPILOT's Python Application Programmable Interface Through Heliostat Optimal Aimpoint Strategy Use Case,” J. Sol. Energy Eng., vol. 144, no. 030906, Mar. 2022, doi: https://doi.org/10.1115/1.4053973.
A. Zolan, C. Augustine, and K. Armijo, “Equivalent breakeven installed cost: A tradeoff-informed measure for technoeconomic analysis of candidate heliostat improvements,” Proceedings of 2022 SolarPACES Conference, 2022, doi: https://doi.org/10.52825/solarpaces.v1i.783.
A. Steinfeld and M. Schubnell, “Optimum aperture size and operating temperature of a solar cavity-receiver,” Sol. Energy, vol. 50, no. 1, pp. 19–25, Jan. 1993, doi: https://doi.org/10.1016/0038-092X(93)90004-8.
E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science, vol. 197, no. 4308, pp. 1050–1056, Sep. 1977, doi: https://doi.org/10.1126/science.197.4308.1050.
R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermochemical processing,” Sol. Energy, vol. 85, no. 2, pp. 334–343, Feb. 2011, doi: https://doi.org/10.1016/j.solener.2010.11.018.
W. J. C. Schiel and M. A. Geyer, “Testing an external sodium receiver up to heat fluxes of 2.5 MW/m2: Results and conclusions from the IEA-SSPS high flux experiment conducted at the central receiver system of the Plataforma Solar de Almeria (Spain),” Sol. Energy, vol. 41, no. 3, pp. 255–265, Jan. 1988, doi: https://doi.org/10.1016/0038-092X(88)90143-0.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Alexander Zolan, Chad Augustine, Evan Westphal, Kenneth Armijo, Ye Wang, John Pye
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-04-23
Published 2024-07-24
Funding data
-
Solar Energy Technologies Office
Grant numbers 38896