Porous Monolithic Perovskite Structures for High-Temperature Thermochemical Heat Storage in Concentrated Solar Power (CSP) Plants and Renewable Electrification of Industrial Processes

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.862

Keywords:

Thermochemical Energy Storage, Porous Ceramics, Perovskites

Abstract

A novel approach towards thermal energy storage of surplus renewable energy (RE) is introduced via a hybrid thermochemical/sensible heat storage concept implemented with the aid of porous structures made of redox metal oxides, capable of reversible reduction/oxidation upon heating/cooling in direct contact with air, accompanied, respectively, by endothermic/ exothermic heat effects and demonstrating fully reversible dimensional changes under cyclic operation. The proposed modular storage units can be heated during the day to a level exceeding the metal oxide’s reduction onset temperature either by hot air streams from air-operated Concentrated Solar Power (CSP) tower plants or via surplus/cheap RE-electricity from photovoltaics, wind, or other renewable sources (“charging”/energy storage step). When this RE sources become non-available or upon demand, the fully charged system can transfer its energy to a controlled airflow that passes through the porous oxide block and initiates the exothermic oxidation of the reduced metal oxide. Thus, a hot air stream is produced which can be used to provide electricity or exploitable heat for industrial processes. The present work elaborates on the operating principles and the potential application of this concept and reports progress in the preparation and shaping of reticulated porous ceramics (RPCs also known as “ceramic foams”) from CaMnO3-based perovskite compositions and their preliminary testing with respect to cyclic reduction-oxidation.

Downloads

Download data is not yet available.

References

1. F. Schöniger, R. Thonig, G. Resch, J. Lilliestam, “Making the sun shine at night: comparing the cost of dispatchable concentrating solar power and photovoltaics with storage”, Energy Sources, Part B: Economics, Planning, and Policy, 16, 55-74, (2021). https://doi.org/10.1080/15567249.2020.1843565

2. S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, “A design study for regenerator-type heat storage in solar tower plants–Results and conclusions of the HOTSPOT project”, Energy Procedia, 49, 1088-1096, (2014). https://doi.org/10.1016/j.egypro.2014.03.118

3. D.C. Stack, D. Curtis, C. Forsberg, “Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage”, Applied Energy, 242, 782–796, (2019). https://doi.org/10.1016/j.apenergy.2019.03.100

4. S. Madeddu, F. Ueckerdt, M. Pehl, J. Peterseim, M. Lord, K.A. Kumar, C. Krüger, G. Luderer, “The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat)”, Environmental Research Letters, 15(12), 124004, (2020). 10.1088/1748-9326/abbd02

5. Siemens Gamesa Renewable Energy, “ETES: Electric Thermal Energy Storage. How thermal power plants can benefit from the energy transition” https://assets.new.siemens.com/siemens/assets/api/uuid:6f83e987-b0b8-4663-8a19-cd011682f9a0/3-schumacher-benefits-of-energy-transition-for-thermal-power-pla.pdf (accessed on 12.09.2023).

6. KRAFTANLAGEN, “Green Heat Module–our technology revolution for your decarbonization”, https://www.kraftanlagen.com/en/solutions/energy/green-heat-module (accessed on 12.09.2023).

7. C. Pagkoura, G. Karagiannakis, A. Zygogianni, S. Lorentzou, M. Kostoglou, A. G. Konstandopoulos, M. Rattenburry and J. W. Woodhead, “Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants”, Solar Energy, 108, 146-163, (2014). https://doi.org/10.1016/j.solener.2014.06.034

8. C. Pagkoura, G. Karagiannakis, A. Zygogianni, S. Lorentzou, A. G. Konstandopoulos, “Cobalt Oxide Based Honeycombs as Reactors/Heat Exchangers for Redox Thermochemical Heat Storage in Future CSP Plants”, Energy Procedia, 69, 978-987, (2015). https://doi.org/10.1016/j.egypro.2015.03.183

9. G. Karagiannakis, C. Pagkoura, E. Halevas, P. Baltzopoulou, A. G. Konstandopoulos, “Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: Multi-cyclic assessment and semi-quantitative heat effects estimations”, Solar Energy, 133, 394-407, (2016). https://doi.org/10.1016/j.solener.2016.04.032

10. C. Agrafiotis, S. Tescari, M. Roeb, M. Schmücker, C. Sattler, “Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers”, Solar Energy, 114, 459-475, (2015). https://doi.org/10.1016/j.solener.2014.12.037

11. S. Tescari, A. Singh, L. de Oliveira, S. Breuer C. Agrafiotis, B. Schlögl, M. Roeb, C. Sattler, “Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant”, Applied Energy, 189, 66–75, (2017). https://doi.org/10.1016/j.apenergy.2016.12.032

12. M. Pein, L. Matzel, L. de Oliveira, G. Alkan, A. Francke, P. Mechnich, C. Agrafiotis, M. Roeb, C. Sattler, ‘‘Reticulated porous perovskite structures for thermochemical solar energy storage’’, Advanced Energy Materials, 12(10), 2102882, (2022). https://doi.org/10.1002/aenm.202102882

13. P. Thiel, J. Eilertsen, S. Populoh, G. Saucke, M. Döbeli, A. Shkabko, L. Sagarna, L. Karvonen, A. P. Weidenkaff, “Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3–δ”, Journal of Applied Physics 114, 243707, (2013). https://doi.org/10.1063/1.4854475

14. A. J. Schrader, G. L. Schieber, A. Ambrosini, P. G. Loutzenhiser, “Experimental demonstration of a 5 kWth granular-flow reactor for solar thermochemical energy storage with aluminum-doped calcium manganite particles”, Applied Thermal Engineering, 173, 115257, (2020). https://doi.org/10.1016/j.applthermaleng.2020.115257

15. G. S. Jackson, L. Imponenti, K. J. Albrecht, D. C. Miller, R. J. Braun, “Inert and reactive oxide particles for high-temperature thermal energy capture and storage for concentrating solar power” Journal of Solar Energy Engineering, 141, 021016 (2019). https://doi.org/10.1115/1.4042128

16. D. Yilmaz, E. Darwish, H. Leion, “Utilization of promising calcium manganite oxygen carriers for potential thermochemical energy storage application”, Industrial & Engineering Chemistry Research, 60, 1250-1258, (2021). https://doi.org/10.1021/acs.iecr.0c05182

17. E. Mastronardo, X. Qian, J. M. Coronado and S. M. Haile, “The favourable thermodynamic properties of Fe-doped CaMnO3 for thermochemical heat storage”, Journal of Materials Chemistry A, 8, 8503-8517, (2020). https://doi.org/10.1039/D0TA02031A

18. L. Klaas, M. Pein, P. Mechnich, A. Francke, D. Giasafaki, D. Kriechbaumer, C. Agrafiotis, M. Roeb, C. Sattler, “Controlling thermal expansion and phase transitions in Ca1-xSrxMnO3 by Sr-content”, Physical Chemistry Chemical Physics, 24, 27976-27988, (2022). https://doi.org/10.1039/D2CP04332G

19. M. Twigg, J. Richardson, “Theory and applications of ceramic foam catalysts”. Chemical Engineering Research and Design, 80, 183-189, (2002). https://doi.org/10.1205/026387602753501906

20. T. Fey, U. Betke, S. Rannabauer and M. Scheffler, “Reticulated Replica Ceramic Foams: Processing, Functionalization, and Characterization”, Advanced Engineering Materials, 19, 1700369, (2017). https://doi.org/10.1002/adem.201700369

21. Ambrosini, J.E. Miller, D.D. Gill, “Thermal energy storage and power generation systems and methods”, US patent US10107268 B1, (2018).

22. D.M. Beall, W.A. Cutler, “Smog begone! How development of ceramic automotive catalytic substrates and filters helped reduce air pollution”, American Ceramic Society Bulletin, 99, 24-31, (2020).

Downloads

Published

2024-10-15

How to Cite

Agrafiotis, C., Pein, M., Eltayeb, A., Klaas, L., de Oliveira, L., K. Singh, A., … Sattler, C. (2024). Porous Monolithic Perovskite Structures for High-Temperature Thermochemical Heat Storage in Concentrated Solar Power (CSP) Plants and Renewable Electrification of Industrial Processes. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.862

Conference Proceedings Volume

Section

Thermal Energy Storage Materials, Media, and Systems
Received 2023-10-17
Accepted 2024-09-12
Published 2024-10-15

Funding data

  • European Commission
    Grant numbers HORIZON-CL5-2021-D3-03-101084569;HORIZON-CL5-2022-D4-01-05-101104182