Managing Heat Transfer Intensity in a Fluidized Particle-in-Tube Solar Receiver
DOI:
https://doi.org/10.52825/solarpaces.v2i.834Keywords:
Particle-Driven CSP, Solar Receiver, Fluidized Bed, Heat TransferAbstract
Particle flow structure and associated heat transfer coefficient are examined as a function of temperature in a single-tube fluidized bed solar receiver operating in upward particle flow mode. It is found that temperature has a strong effect on both fluidization regimes and wall-to-bed heat transfer coefficient that varies in the range 800-1200 W/(m2.K). Turbulent fluidization regime results in the most intense heat transfer between the irradiated wall and the fluidized particle.
Downloads
References
1. G. Flamant, B. Grange, J. Wheeldon, F. Siros, B. Valentin, F. Bataille, , H. Zhang, Y. Deng, J. Baeyens. Opportunities and challenges in using particle circulation loops for concentrated solar power applications. Progress in Energy and Combustion Science 94, 101056, 2023. https://doi.org/10.1016/j.pecs.2022.101056.
2. W. Wu, L. Ambseck, R. Buck, R. Uhlig, R. Ritz-Paal, Proof of concept test of a centrifugal particle receiver, Energy Procedia, 49 (2014) 560-568. https://doi.org/10.1115/1.4030657.
3. C.K. Ho, G. Peacock, J. M. Christian, K. Albrecht, J. E. Yellowhair, and D. Ray. On-sun testing of a 1 MWt particle receiver with automated particle mass-flow and temperature control. AIP Conference Proceedings 2126, 030027, 2019; https://doi.org/10.1063/1.5117539.
4. G. Flamant, D. Gauthier, H. Benoit, J.L. Sans, R. Garcia, B. Boissière, R. Ansart, M. Hemati, Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: On-sun proof of concept, Chemical Engineering Science, 102, 567-576, 2013. https://doi.org/10.1016/j.ces.2013.08.051.
5. H. Benoit, I. Pérez Lopez, D. Gauthier, J.L. Sans, G. Flamant, On-sun demonstration of a 750 °C heat transfer fluid for concentrating solar systems: Dense particle suspension in tube, Solar Energy, 118, 622-633, 2015. https://www.doi.org/10.1016/j.solener.2015.06.007.
6. R. Gueguen, G. Sahuquet, S. Mer, A. Toutant, F. Bataille and G. Flamant. Fluidization Regimes of Dense Suspensions of Group A Fluidized Particles in a High Aspect Ratio Column. Chemical Engineering Science, 267, 118360, 2023. https://doi.org/10.1016/j.ces.2022.118360.
7. R. Gueguen, S. Mer, A. Toutant, F. Bataille and G. Flamant. Effect of temperature on the hydrodynamics of a fluidized bed circulating in a long tube for a solar energy harvesting application. Chemical Engineering Science 281, 119218, 2023. https://doi.org/10.1016/j.ces.2023.119218.
8. Grace, J.R., Bi, X., Ellis, N. Chap. 9: Turbulent Fluidization, in: Essential of Fluidization Technology. John Wiley & Sons Ltd.: Chichester, U.K., pp. 163–180.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Ronny Gueguen, Samuel Mer, Adrien Toutant, Françoise Bataille, Gilles Flamant
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-09-06
Published 2024-10-15
Funding data
-
Agence Nationale de la Recherche
Grant numbers ANR-10-LABX-22-01