On-Site Testing and Certification of Large-Size Concentrating Tracking Solar Thermal Collector for Medium-Temperature CSP or SHIP Plants

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.823

Keywords:

Large-Size Collector, Solar Collector Testing, On-Site Testing, Optical Simulation, SHIP

Abstract

The certification of large-size Linear Fresnel Reflector (LFR) or variable geometry collectors is possible through international standards ISO 9806 and IEC 62862-5-2. However, those concentrating solar collectors have a large-size design that makes it more complicated to test in an accredited permanent laboratory. So, the most common way to accredit those solar products is through on-site testing. In this study, one large-size LFR and one boosted Evacuated Tube Collector (ETC) with lateral reflectors were tested in-site according to the standard ISO 9806.

Downloads

Download data is not yet available.

References

1. International Standard ISO 9806 Standard "Solar Energy - Test method for solar collectors" (2017).

2. International Standard IEC 62862-5-2 ED1 - Solar thermal electric plants - Part 5-2: “Systems and components - General requirements and test methods for large-size linear Fresnel collectors” (2021)

3. IEA-SHC Task 64 web page https://task64.iea-shc.org/subtasks

4. A. Zirkel-Hofer, “Enhanced dynamic performance testing method for line-concentrating solar thermal collectors”, PhD thesis. Faculty of Mechanical Engineering from the Technical University Carolo-Wilhelmina in Braunschweig. (2018)

5. A. Hofer, D. Büchner, K. Kramer, S. Fahr, A. Heimsath, W.J. Platzer, S. Scholl. “Comparison of two different (quasi-) dynamic testing methods for the performance evaluation of a Linear Fresnel Process Heat Collector”. SolarPACES 2014, Energy Procedia 69 (2015 ) 84 – 95. https://doi.org/10.1016/j.egypro.2015.03.011.

6. F. Yang, D.Itskhokine, S.Benmarraze, M.Benmarraze, A.Hofer, F.Lecat, A.Ferrière. “Acceptance testing procedure for Linear Fresnel Reflector solar systems in utility-scale solar thermal power plants”. SolarPACES 2014, Energy Procedia 69 (2015) 1479 – 1487. https://doi.org/10.1016/j.egypro.2015.03.097.

7. F. Sallaberry, R. Pujol Nadal, V. Martínez Moll, J-L. Torres, “Optical and thermal characterization procedure of a variable geometry concentrator: a Standard approach”, Renewable Energy 68 (2014) 842-852. https://doi.org/10.1016/j.renene.2014.02.040.

8. F. Sallaberry, F. Alberti, J.-L. Torres, L. Crema, M. Roccabruna, and R. Pujol-Nadal, “Characterization of a medium temperature concentrator for heat process - tracking error estimation”. EUROSUN Congress, Aix-les-Bains (France) (2014).

9. F. Sallaberry, “Characterization of optical losses due to tracking systems on a linear solar thermal concentrator” PhD Thesis. Universidad Pública de Navarra (UPNA) (2015).

10. F. Sallaberry, L. Valenzuela, L. G. Palacin, “On-site parabolic-trough collector testing in solar thermal power plants: Experimental validation of a new approach developed for the IEC 62862-3-2 standard”, Solar Energy (2017) 155, pp 398-409. https://doi.org/10.1016/j.solener.2017.06.045.

11. F. Sallaberry, Z. Tian, B. Perers, S. Furbo, A. Zourellis, J. Holst Rothmann, “On-Site Parabolic-Trough Collector Characterization in Solar District Heating Plant under Quasi-Dynamic Conditions”, SolarPACES (2018)

12. F. Sallaberry, O. Itoiz, A. Heimsath, P. Schöttl, S. Perry, S. Fahr, “Comparison of Different Testing Methods for a Fresnel Linear Reflector Collector according to Standard IEC PT 62862-5-2”, SolarPACES (2021)

13. Rioglass web page https://www.rioglass.com/our-products/sun2heat-solutions.html

14. Seenso web page Seenso Renoval, S.L. - Seenso Renoval https://seenso.es/

15. International Standard ISO 17025 – “General requirements for the competence of testing and calibration laboratories” (2017).

16. A. Zirkel-Hofer, S. Perry, S. Fahr, K. Kramer, A. Heimsath, S. Scholl, W. Platzer, “Improved in situ performance testing of line-concentrating solar collectors: Comprehensive uncertainty analysis for the selection of measurement instrumentation”, Applied Energy (2016) 184, pp298-312. https://doi.org/10.1016/j.apenergy.2016.09.089.

17. S. Mehnert, S. Fischer, U. Fritzche, M.J. Carvalho, C. Stadler, K. Vehring, C. Lampe. Working document of SKM “In-Situ” WG. SKN_N0444_Annex P5.5_In-Situ Collector Certification_R0

18. M. Blanco-Muriel, D.C. Alarcón-Padilla, T. López-Moratalla, M. Lara-Coira. (2001) “Computing the solar vector”. Solar Energy 70(5), 431-441. https://doi.org/10.1016/S0038-092X(00)00156-0.

19. SolarKeyMark European quality label - certified solar collectors database https://solarkeymark.eu/database/

20. SRCC American quality label - certified solar collectors database https://secure.solar-rating.org/Certification/Ratings/RatingsSummaryPage.aspx?type=1

21. Tonatiuh web page at GitHub - iat-cener/tonatiuh:” A Monte Carlo ray tracer for the optical simulation of solar concentrating systems” https://github.com/iat-cener/tonatiuh

22. J.D. Hertel, V. Canals, R. Pujol-Nadal, “On-site optical characterization of large-scale solar collectors through ray-tracing optimization”, Applied Energy (2020) 262, 114546. https://doi.org/10.1016/j.apenergy.2020.114546.

23. F. Sallaberry and A. Mutuberria Larrayoz, “Characterization the optical efficiency in a Linear Fresnel Reflector collector” (Paper under review at Solar Energy journal, 2023)

Downloads

Published

2025-01-06

How to Cite

Sallaberry, F., García de Jalón, A., Mutuberria, A., Bernad, I., Ubach, J., Ajona, J., & Sanchez, M. (2025). On-Site Testing and Certification of Large-Size Concentrating Tracking Solar Thermal Collector for Medium-Temperature CSP or SHIP Plants. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.823
Received 2023-10-11
Accepted 2024-04-08
Published 2025-01-06