On-Site Testing and Certification of Large-Size Concentrating Tracking Solar Thermal Collector for Medium-Temperature CSP or SHIP Plants
DOI:
https://doi.org/10.52825/solarpaces.v2i.823Keywords:
Large-Size Collector, Solar Collector Testing, On-Site Testing, Optical Simulation, SHIPAbstract
The certification of large-size Linear Fresnel Reflector (LFR) or variable geometry collectors is possible through international standards ISO 9806 and IEC 62862-5-2. However, those concentrating solar collectors have a large-size design that makes it more complicated to test in an accredited permanent laboratory. So, the most common way to accredit those solar products is through on-site testing. In this study, one large-size LFR and one boosted Evacuated Tube Collector (ETC) with lateral reflectors were tested in-site according to the standard ISO 9806.
Downloads
References
1. International Standard ISO 9806 Standard "Solar Energy - Test method for solar collectors" (2017).
2. International Standard IEC 62862-5-2 ED1 - Solar thermal electric plants - Part 5-2: “Systems and components - General requirements and test methods for large-size linear Fresnel collectors” (2021)
3. IEA-SHC Task 64 web page https://task64.iea-shc.org/subtasks
4. A. Zirkel-Hofer, “Enhanced dynamic performance testing method for line-concentrating solar thermal collectors”, PhD thesis. Faculty of Mechanical Engineering from the Technical University Carolo-Wilhelmina in Braunschweig. (2018)
5. A. Hofer, D. Büchner, K. Kramer, S. Fahr, A. Heimsath, W.J. Platzer, S. Scholl. “Comparison of two different (quasi-) dynamic testing methods for the performance evaluation of a Linear Fresnel Process Heat Collector”. SolarPACES 2014, Energy Procedia 69 (2015 ) 84 – 95. https://doi.org/10.1016/j.egypro.2015.03.011.
6. F. Yang, D.Itskhokine, S.Benmarraze, M.Benmarraze, A.Hofer, F.Lecat, A.Ferrière. “Acceptance testing procedure for Linear Fresnel Reflector solar systems in utility-scale solar thermal power plants”. SolarPACES 2014, Energy Procedia 69 (2015) 1479 – 1487. https://doi.org/10.1016/j.egypro.2015.03.097.
7. F. Sallaberry, R. Pujol Nadal, V. Martínez Moll, J-L. Torres, “Optical and thermal characterization procedure of a variable geometry concentrator: a Standard approach”, Renewable Energy 68 (2014) 842-852. https://doi.org/10.1016/j.renene.2014.02.040.
8. F. Sallaberry, F. Alberti, J.-L. Torres, L. Crema, M. Roccabruna, and R. Pujol-Nadal, “Characterization of a medium temperature concentrator for heat process - tracking error estimation”. EUROSUN Congress, Aix-les-Bains (France) (2014).
9. F. Sallaberry, “Characterization of optical losses due to tracking systems on a linear solar thermal concentrator” PhD Thesis. Universidad Pública de Navarra (UPNA) (2015).
10. F. Sallaberry, L. Valenzuela, L. G. Palacin, “On-site parabolic-trough collector testing in solar thermal power plants: Experimental validation of a new approach developed for the IEC 62862-3-2 standard”, Solar Energy (2017) 155, pp 398-409. https://doi.org/10.1016/j.solener.2017.06.045.
11. F. Sallaberry, Z. Tian, B. Perers, S. Furbo, A. Zourellis, J. Holst Rothmann, “On-Site Parabolic-Trough Collector Characterization in Solar District Heating Plant under Quasi-Dynamic Conditions”, SolarPACES (2018)
12. F. Sallaberry, O. Itoiz, A. Heimsath, P. Schöttl, S. Perry, S. Fahr, “Comparison of Different Testing Methods for a Fresnel Linear Reflector Collector according to Standard IEC PT 62862-5-2”, SolarPACES (2021)
13. Rioglass web page https://www.rioglass.com/our-products/sun2heat-solutions.html
14. Seenso web page Seenso Renoval, S.L. - Seenso Renoval https://seenso.es/
15. International Standard ISO 17025 – “General requirements for the competence of testing and calibration laboratories” (2017).
16. A. Zirkel-Hofer, S. Perry, S. Fahr, K. Kramer, A. Heimsath, S. Scholl, W. Platzer, “Improved in situ performance testing of line-concentrating solar collectors: Comprehensive uncertainty analysis for the selection of measurement instrumentation”, Applied Energy (2016) 184, pp298-312. https://doi.org/10.1016/j.apenergy.2016.09.089.
17. S. Mehnert, S. Fischer, U. Fritzche, M.J. Carvalho, C. Stadler, K. Vehring, C. Lampe. Working document of SKM “In-Situ” WG. SKN_N0444_Annex P5.5_In-Situ Collector Certification_R0
18. M. Blanco-Muriel, D.C. Alarcón-Padilla, T. López-Moratalla, M. Lara-Coira. (2001) “Computing the solar vector”. Solar Energy 70(5), 431-441. https://doi.org/10.1016/S0038-092X(00)00156-0.
19. SolarKeyMark European quality label - certified solar collectors database https://solarkeymark.eu/database/
20. SRCC American quality label - certified solar collectors database https://secure.solar-rating.org/Certification/Ratings/RatingsSummaryPage.aspx?type=1
21. Tonatiuh web page at GitHub - iat-cener/tonatiuh:” A Monte Carlo ray tracer for the optical simulation of solar concentrating systems” https://github.com/iat-cener/tonatiuh
22. J.D. Hertel, V. Canals, R. Pujol-Nadal, “On-site optical characterization of large-scale solar collectors through ray-tracing optimization”, Applied Energy (2020) 262, 114546. https://doi.org/10.1016/j.apenergy.2020.114546.
23. F. Sallaberry and A. Mutuberria Larrayoz, “Characterization the optical efficiency in a Linear Fresnel Reflector collector” (Paper under review at Solar Energy journal, 2023)
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Fabienne Sallaberry, Alberto García de Jalón, Amaia Mutuberria, Ignacio Bernad, Josep Ubach, Jose Ajona, Marcelino Sanchez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-04-08
Published 2025-01-06