Thermal Properties of Cu–Al–Ge Alloy PCM for Improving Thermal Energy Storage of Current CSP

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.799

Keywords:

Concentrated Solar Power, Thermal Storage System, Phase Change Material, Alloy

Abstract

Metallic phase change material was proposed and examined at melting/eutectic temperatures less than 600 °C for latent heat storage in concentrated solar power. The PCM alloy can potentially charge/discharge thermal energy as a sensible/latent heat at the temperature range of 414-527 °C. The working temperatures of PCM alloy are in operation temperatures of current molten-salt based CSP plant. In this study, thermal response testing of PCM alloy and sensible/latent storage unit that PCM alloy was loaded in a ceramic honeycomb were prepared in a laboratory scale. The thermal charging/discharging performance of PCM alloy and sensible/latent storage unit were experimentally examined and compared. The storage unit provided thermal release/absorption behaviour at close to temperatures of the thermodynamic equilibrium state.

Downloads

Download data is not yet available.

References

A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L. F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, Materials and Modellization. Renewable and Sustainable Energy Reviews, 2010, 14(1), pp. 31–55.

C. Frantz, M. Ebert, B. Schlögl-Knothe, M. Binder, C. Schuhbauer, Experimental receiver setup of a high performance molten salt test receiver system, SolarPACES2021 Proceedings.

A. Bonk, M. Braun, V. A. Sötz, T. Bauer, Solar Salt – Pushing an old material for energy storage to a new limit, Applied Energy, 2020, 262, pp.114535.

C. S. Turchi, J. Vidal, M. Bauer, Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits, Solar Energy, 2018, 164, pp. 38-46.

S. Kunkel, F. Klasing, A. Hanke, T. Bauer, A. Bonk, Concentrating solar power at higher limits: First studies on molten nitrate salts at 600 °C in a 100 kg-scale hot tank, Solar Energy Materials & Solar Cells, 2023, 258, pp. 112412.

J. Steinbrecher, A. Hanke, M. Braun, T. Bauer, A. Bonk, Stabilization of Solar Salt at 650 ◦C – Thermodynamics and practical implications for thermal energy storage systems, Solar Energy Materials & Solar Cells, 2023, 258, pp. 112411.

N. Gokon, S. J. Chew, S. Bellan, T. Kodama, T. Hatamachi, H. Cho, Chemical Compatibility of Cu-Ge alloy with Container Materials for Latent Heat Storage System, SolarPACES proceedings 2019.

N. Gokon, S. Nakamura, T. Yamaguchi, T. Kodama, Cyclic properties of thermal storage/discharge for Al-Si alloy in vacuum for solar thermochemical fuel production, Energy Procedia, 2015, 69, pp. 1759-1769.

N. Gokon, T. Yamaguchi, T. Kodama, Cyclic thermal storage/discharge performances of hypereutectic Cu-Si alloy in vacuum for solar thermochemical process, Energy, 2016, 113, pp. 1099-1108.

N. Gokon, S. J. Chew, Y. Nakano, T. Kodama, S. Bellan, H. S. Cho, Thermal charge/discharge performance of iron–germanium alloys as phase change materials for solar latent heat storage at high temperatures, Journal of Energy Storage, 2020, 30, pp. 101420.

N. Gokon, S. J. Chew, Y. Nakano, S. Okazaki, T. Kodama, T. Hatamachi, S. Bellan, Phase change material of copper–germanium alloy as solar latent heat storage at high temperatures, Front. Energy Res., 2021, 9, 696213.

FactSage program ver 8.2, GTT-Technologies Kaiserstrase 100, 52134 Herzogenrath, GERMANY. Available online: http://www.gtt-technologies.de/

Downloads

Published

2024-09-16

How to Cite

Gokon, N., Yuzawa, T., Kamada, T., Ikeuchi, Y., & Hatamachi, T. (2024). Thermal Properties of Cu–Al–Ge Alloy PCM for Improving Thermal Energy Storage of Current CSP. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.799

Conference Proceedings Volume

Section

Advanced Materials, Manufacturing, and Components
Received 2023-10-06
Accepted 2024-07-15
Published 2024-09-16

Funding data