Cascade Latent Heat Storage for Solar Cooking Applications

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.796

Keywords:

Cascade Latent Heat Storage, Phase Change Material, Solar Cooking

Abstract

The present investigation explores the potential of multiple phase change material (PCM) based storage for real-time solar thermal applications. There are two types of storage configurations tested in this work for the simultaneous charging and discharging operation, i.e., single PCM-based NaNO3 storage and 2-stage cascade latent heat storage having NaNO3 and NaNO2 as the storage mediums in the consecutive stages. The storage is designed to achieve the end-use temperature condition of 513 K (the highest temperature required for cooking) with the latent thermal energy accumulation capacity of 1 MJ. The study envisages that instead of using a single PCM in the storage unit, 2-stage cascading of the PCMs can improve energy accumulation and retrieval in storage. After 8 hours of operation, none of the storage achieves the complete charging state. The energy accumulated in the NaNO3/NaNO2 cascade storage is found to be 2.6 times higher than the energy accumulated in the NaNO3 storage. NaNO3/NaNO2 storage achieves the desired constant outlet temperature of cold heat transfer fluid for chapati making (531 K) after 165 minutes of operation. At this moment, the latent energy accumulated in the NaNO3 and NaNO3/NaNO2 storage is observed as 35% and 14%, respectively

Downloads

Download data is not yet available.

References

S. Jain, K. R. Kumar, D. Rakshit, B. Premachandran, and K. S. Reddy, “Study on the melting dynamics of latent heat storage for various orientations , shell shapes , and eccentricity,” Thermal Science and Engineering Progress, vol. 45, no. June, p. 102087, 2023, doi: https://doi.org/10.1016/j.tsep.2023.102087.

M. E. Zayed, J. Zhao, W. Li, A. H. Elsheikh, A. M. Elbanna, L. Jing, and A. E. Geweda, “Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods,” Journal of Energy Storage, vol. 30, no. January, p. 101341, 2020, doi: https://doi.org/10.1016/j.est.2020.101341.

M. J. Li, M. J. Li, X. D. Xue, and D. Li, “Optimization and design criterion of the shell-and-tube thermal energy storage with cascaded PCMs under the constraint of outlet threshold temperature,” Renewable Energy, vol. 181, pp. 1371–1385, 2022, doi: https://doi.org/10.1016/j.renene.2021.09.086.

S. Jain, K. R. Kumar, and D. Rakshit, “Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: Research progress, challenges, and recommendations,” Sustainable Energy Technologies and Assessments, vol. 48, no. September, p. 101633, 2021, doi: https://doi.org/10.1016/j.seta.2021.101633.

N. H. S. Tay, F. Bruno, and M. Belusko, “Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD,” Applied Energy, vol. 104, pp. 79–86, 2013, doi: https://doi.org/10.1016/j.apenergy.2012.10.040.

C. W. Robak, T. L. Bergman, and A. Faghri, “Enhancement of latent heat energy storage using embedded heat pipes,” International Journal of Heat and Mass Transfer, vol. 54, no. 15–16, pp. 3476–3484, 2011, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.038.

C. Nie, J. Liu, and S. Deng, “Effect of geometric parameter and nanoparticles on PCM melting in a vertical shell-tube system,” Applied Thermal Engineering, vol. 184, no. May 2020, p. 116290, 2021, doi: https://doi.org/10.1016/j.applthermaleng.2020.116290.

P. T. Sardari, H. I. Mohammed, D. Giddings, G. S. walker, M. Gillott, and D. Grant, “Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source,” Energy, vol. 189, p. 116108, 2019, doi: https://doi.org/10.1016/j.energy.2019.116108.

S. Jain, K. R. Kumar, D. Rakshit, B. Premachandran, and K. S. Reddy, “Influence of the storage orientation and shell shape on the melting dynamics of shell and tube-type cascade latent heat storage,” Applied Thermal Engineering, vol. 231, no. April, p. 120923, 2023, doi: https://doi.org/10.1016/j.applthermaleng.2023.120923.

J. Wang, R. Y. Ouyang, and G. Chen, “Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials,” International Journal of Energy Research vol. 447, no. October 1999, pp. 439–447, 2001, doi: https://doi.org/10.1002/er.695.

Z. Gong, A. S. Mujumdar “A New Solar Receiver Thermal Store for Space-Based Activities Using Multiple Composite Phase-Change Materials,” J. Sol. Energy Eng. vol. 1, no. August, pp. 5–10, 1995. https://doi.org/10.1115/1.2847798.

S. Jain, K. R. Kumar, D. Rakshit, B. Premachandran, and K. S. Reddy, “Cyclic performance assessment of medium-temperature cascade thermal energy storage,” Journal of Energy Storage, vol. 68, no. January, p. 107662, 2023, doi: https://doi.org/10.1016/j.est.2023.107662.

A. Herez, M. Ramadan, and M. Khaled, “Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios,” Renewable and Sustainable Energy Reviews, vol. 81, no. February 2017, pp. 421–432, 2018, doi: https://doi.org/10.1016/j.rser.2017.08.021.

A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numerical Heat Transfer, vol. 13, no. 3, pp. 297–318, 1988, doi: https://doi.org/10.1080/10407788808913615.

M. Fadl and P. C. Eames, “Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems,” Applied Thermal Engineering, vol. 151, no. January, pp. 90–99, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2019.01.102.

D. N. Yadav, P. E. Patki, C. Mahesh, G. K. Sharma, and A. S. Bawa, “Optimisation of baking parameters of chapati with respect to vitamin B 1 and B2 retention and quality,” International Journal of Food Science and Technology, vol. 43, no. 8, pp. 1474–1483, 2008, doi: https://doi.org/10.1111/j.1365-2621.2008.01712.x.

A. Mani, M. S. Swaminathan, and S. P. Venkiteshwaran, “Distribution of sunshine and solar radiation over the Indian Peninsula”, MAUSAM, vol. 13, no. 2, pp. 195–212, Apr. 1962. https://doi.org/10.54302/mausam.v13i2.4338.

Downloads

Published

2024-07-24

How to Cite

Jain, S., Kumar, K. R., Rakshit, D., Premachandran, B., & Reddy, K. S. (2024). Cascade Latent Heat Storage for Solar Cooking Applications. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.796

Conference Proceedings Volume

Section

Thermal Energy Storage Materials, Media, and Systems
Received 2023-10-06
Accepted 2024-04-24
Published 2024-07-24

Funding data