The Effect of Long-Term Corrosion on a Molten Salt Pump in Contact With a Ternary Mixture in a CSP Plant
DOI:
https://doi.org/10.52825/solarpaces.v1i.792Keywords:
Thermal Energy Storage, Molten Salts, Lithium Nitrate, CorrosionAbstract
Solar thermal plants commonly plan their operation for a period of approximately 25 years. Therefore, it is key to accurately predict and evaluate the damage and faults occurring for that long period. Among all components, we find that choosing the heat storage medium (molten salt) and the material (steel) used in the equipment and pipping plays a crucial role in the plant’s design. We tested the long-term corrosion effect of the molten salt pump in a low-melting-point ternary mixture composed of 30wt.%LiNO3+57wt.%KNO3+13wt.%NaNO3 over a period of more than 5 years, corresponding to 30,000 hours of operation in a pilot experimental facility built at the University of Antofagasta (Chile).
Downloads
References
M. Medrano, A. Gil, I. Martorell, X. Potau, and L. F. Cabeza, “State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 56–72, Jan. 2010, https://doi.org/10.1016/j.rser.2009.07.036.
J. A. Gil et al., “State of the art on high-temperature thermal energy storage for power generation. Part 1-Concepts, materials, and modelization,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 31–55, 2010, DOI: https://doi.org/10.1016/j.rser.2009.07.035.
A. G. Fernández, S. Ushak, H. Galleguillos, and F. J. Pérez, “Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants,” Appl. Energy, vol. 119, no. 3, pp. 131–140, 2014, DOI: https://doi.org/10.1016/j.apenergy.2013.12.061.
S. Ushak, A. G. Fernández, and M. Grageda Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. Woodhead Publishing Limited, 2015.
L. F. Cabeza et al., “Lithium in thermal energy storage: A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 42, pp. 1106–1112, 2015, DOI: https://doi.org/10.1016/j.rser.2014.10.096.
M. Henríquez, L. Guerreiro, Á. G. Fernández, and E. Fuentealba, “Lithium nitrate purity influence assessment in ternary molten salts as thermal energy storage material for CSP plants,” Renew. Energy, vol. 149, pp. 940–950, 2020, doi: https://doi.org/10.1016/j.renene.2019.10.075.
M. Henríquez, Á. G. Fernández, C. Soto, and E. Fuentealba, “Proposal for the development of Chilean LiNO3 as thermal energy storage material for CSP plants,” Proc. ISES Sol. World Congr. 2019 IEA SHC Int. Conf. Sol. Heat. Cool. Build. Ind. 2019, pp. 1373–1380, 2020.
M. Sarvghad, G. Will, and T. A. Steinberg, “Corrosion of Inconel 601 in molten salts for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 172, pp. 220–229, 2017, https://doi.org/10.1016/j.solmat.2017.07.036.
M. Sarvghad, G. Will, and T. A. Steinberg, “Corrosion of steel alloys in molten NaCl + Na2SO4 at 700 °C for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 179, no. March, pp. 207–216, 2018, https://doi.org/10.1016/j.solmat.2017.11.017.
C. C. Tsaur, J. C. Rock, C. J. Wang, and Y. H. Su, “The hot corrosion of 310 stainless steel with pre-coated NaCl/Na 2so4 mixtures at 750°C,” Mater. Chem. Phys., vol. 89, no. 2–3, pp. 445–453, 2005, https://doi.org/10.1016/j.matchemphys.2004.10.002.
R. W. Bradshaw and S. H. Goods, “Corrosion Resistance of Stainless Steels During Thermal Cycling in Alkali Nitrate,” Distribution, no. September, pp. 1–39, 2001.
C. J. Wang and S. M. Chen, “The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel,” Surf. Coatings Technol., vol. 200, no. 22-23 SPEC. ISS., pp. 6601–6605, 2006, https://doi.org/10.1016/j.surfcoat.2005.11.031.
A. G. Fernández, J. Gomez-Vidal, E. Oró, A. Kruizenga, A. Solé, and L. F. Cabeza, “Mainstreaming commercial CSP systems: A technology review,” Renew. Energy, vol. 140, pp. 152–176, 2019, https://doi.org/10.1016/j.renene.2019.03.049.
C. M. Kramer, Z. A. Munir, and J. V. Volponi, “Screening tests of sodium nitrate decomposition,” Sol. Energy Mater., vol. 6, no. 1, pp. 85–95, 1981, https://doi.org/10.1016/0165-1633(81)90050-2.
T. Wang, D. Mantha, and R. G. Reddy, “Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 100, pp. 162–168, 2012, https://doi.org/10.1016/j.solmat.2012.01.009.
A. O. Hoshino Yoshio, Utsunomiya Taizo, “The Thermal Decomposition of Sodium Nitrate and the effects of Several Oxides on the Decomposition,” Chem. Soc. Japan, 1981.
A. G. Fernández, H. Galleguillos, and F. J. Pérez, “Corrosion Ability of a Novel Heat Transfer Fluid for Energy Storage in CSP Plants,” Oxid. Met., vol. 82, no. 5–6, pp. 331–345, 2014,https://doi.org/10.1007/s11085-014-9494-3.
A. G. Fernández and F. J. Pérez, “Improvement of the corrosion properties in ternary molten nitrate salts for direct energy storage in CSP plants,” Sol. Energy, vol. 134, no. 3, pp. 468–478, 2016, https://doi.org/10.1016/j.solener.2016.05.030.
A. G. Fernández, M. I. Lasanta, and F. J. Pérez, “Molten salt corrosion of stainless steels and low-Cr steel in CSP plants,” Oxid. Met., vol. 78, no. 5–6, pp. 329–348, 2012, https://doi.org/10.1007/s11085-012-9310-x.
A. Mallco, C. Portillo, M. J. Kogan, F. Galleguillos, and A. G. Fernández, “A materials screening test of corrosion monitoring in LiNO3 containing molten salts as a thermal energy storage material for CSP plants,” Appl. Sci., vol. 10, no. 9, 2020, https://doi.org/10.3390/app10093160.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Mauro Henriquez, Carlos Soto, Carlos Duran , Sebastián Salazar Avalos, Felipe M. Galleguillos Madrid, Luis Guerreiro, Douglas Olivares, Carlos Portillo, Edward Fuentealba, Jose Miguel Cardemil
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Agencia Nacional de Investigación y Desarrollo
Grant numbers VIU21P0051