Green Hydrogen Cogeneration Through Solid-Particle Concentrated Solar Power System Integrated With Proton Exchange Membrane Stacks
DOI:
https://doi.org/10.52825/solarpaces.v2i.786Keywords:
Green Hydrogen, Solid Particles, Concentrated Solar Power, CogenerationAbstract
This paper presents a techno-economic analysis of third-generation (Gen3) Concentrated Solar Power (CSP) systems using solid particles and Proton Exchange Membrane (PEM) stacks for green hydrogen production. The study assesses the Levelized Cost of Hydrogen (LCOH2) as a key metric. A 100 MWe CSP plant can achieve a LCOE of 55-60 $/MWh, with a Solar Multiple (SM) of 3 and Thermal Energy Storage (TES) capacity between 7 h and 16 h. Results show that a 1:1 ratio between PEM and CSP capacities is not needed to optimize hydrogen production, enabling hybrid schemes for electricity and hydrogen co-generation. However, the achieved LCOH2 does not meet IEA’s 2030 target of below 4 $/kg-H2. Key challenges include reducing PEM costs for large-scale applications and ensuring a cost of electricity below 55 $/MWh. Addressing these issues will be crucial for the economic viability of Gen3 CSP+PEM systems in the transition to sustainable hydrogen production.
Downloads
References
Comité Consultivo de Energía, “Hoja de Ruta 2050 hacia una energía sustentable e inclusiva para Chile,” 2015. Accessed: Jul. 24, 2023. [Online]. Available: https://www.energia.gob.cl/sites/default/files/hoja_de_ruta_cc_e2050.pdf
Gobierno de Chile, “Un hito en la historia medioambiental de Chile: a partir de hoy contamos con nuestra primera Ley Marco de Cambio Climático,” Jun. 13, 2022. https://www.gob.cl/noticias/un-hito-en-la-historia-medioambiental-de-chile-partir-de-hoy-contamos-con-nuestra-primera-ley-marco-de-cambio-climatico/ (accessed Jul. 24, 2023).
A. Castillejo-Cuberos and R. Escobar, “Understanding solar resource variability: An in-depth analysis, using Chile as a case of study,” Renew. Sustain. Energy Rev., vol. 120, p. 109664, Mar. 2020, doi: 10.1016/J.RSER.2019.109664.
T. Capurso, M. Stefanizzi, M. Torresi, and S. M. Camporeale, “Perspective of the role of hydrogen in the 21st century energy transition,” Energy Convers. Manag., vol. 251, p. 114898, Jan. 2022, doi: 10.1016/J.ENCONMAN.2021.114898.
A. Kovač, M. Paranos, and D. Marciuš, “Hydrogen in energy transition: A review,” Int. J. Hydrogen Energy, vol. 46, no. 16, pp. 10016–10035, 2021, doi: https://doi.org/10.1016/j.ijhydene.2020.11.256.
J. J. Caparrós Mancera, F. Segura Manzano, J. M. Andújar, E. López, and F. Isorna, “Sun, heat and electricity. A comprehensive study of non-pollutant alternatives to produce green hydrogen,” International Journal of Energy Research, vol. 46, no. 13. John Wiley and Sons Ltd, pp. 17999–18028, Oct. 25, 2022. doi: 10.1002/er.8505.
L. Liu, R. Zhai, and Y. Hu, “Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic,” Energy, vol. 276, Aug. 2023, doi: 10.1016/j.energy.2023.127386.
H. Ishaq, I. Dincer, and C. Crawford, “A review on hydrogen production and utilization: Challenges and opportunities,” Int. J. Hydrogen Energy, vol. 47, no. 62, pp. 26238–26264, Jul. 2022, doi: 10.1016/j.ijhydene.2021.11.149.
M. A. Qaisrani, J. Wei, and L. A. Khan, “Potential and transition of concentrated solar power: A case study of China,” Sustain. Energy Technol. Assessments, vol. 44, Apr. 2021, doi: 10.1016/j.seta.2021.101052.
P. G. Gan, W. Ye, and P. John, “System Modelling and Optimization of a Particle-Based CSP System,” Aust. Natl. Univ. Canberra, Aust., 2021.
I. Arias, J. Cardemil, E. Zarza, L. Valenzuela, and R. Escobar, “Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids,” Renew. Sustain. Energy Rev., vol. 168, p. 112844, Oct. 2022, doi: 10.1016/J.RSER.2022.112844.
L. F. González-Portillo, K. Albrecht, and C. K. Ho, “Techno-Economic Optimization of CSP Plants with Free-Falling Particle Receivers,” Entropy, vol. 23, no. 1. 2021. doi: 10.3390/e23010076.
J. M. Bright, “Solcast: Validation of a satellite-derived solar irradiance dataset,” Sol. Energy, vol. 189, pp. 435–449, Sep. 2019, doi: 10.1016/j.solener.2019.07.086.
P. Scott, A. D. L. C. Alonso, J. T. Hinkley, and J. Pye, “SolarTherm: A flexible Modelica-based simulator for CSP systems,” AIP Conf. Proc., vol. 1850, no. 1, p. 160026, Jun. 2017, doi: 10.1063/1.4984560.
L. F. González-Portillo, V. Soria-Alcaide, K. Albrecht, C. K. Ho, and B. Mills, “Benchmark and analysis of a particle receiver 1D model,” Sol. Energy, vol. 255, pp. 301–313, May 2023, doi: 10.1016/J.SOLENER.2023.03.046.
M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant,” Energy Convers. Manag., vol. 49, no. 10, pp. 2748–2756, Oct. 2008, doi: 10.1016/j.enconman.2008.03.018.
Z. Abdin, C. J. Webb, and E. M. Gray, “Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell,” Int. J. Hydrogen Energy, vol. 40, no. 39, pp. 13243–13257, 2015, doi: 10.1016/j.ijhydene.2015.07.129.
M. Schalenbach, M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, “Pressurized PEM water electrolysis: Efficiency and gas crossover,” Int. J. Hydrogen Energy, vol. 38, no. 35, pp. 14921–14933, Nov. 2013, doi: 10.1016/j.ijhydene.2013.09.013.
A. Mayyas et al., “Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers,” Natl. Renew. Energy Lab., no. August, p. 65, 2019, [Online]. Available: https://www.nrel.gov/docs/fy10osti/72740.pdf.%0Ahttps://www.nrel.gov/docs/fy10osti/72740.pdf
C. Tsiklios, M. Hermesmann, and T. E. Müller, “Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations,” Appl. Energy, vol. 327, Dec. 2022, doi: 10.1016/j.apenergy.2022.120097.
A. Alvez, D. Aitken, D. Rivera, M. Vergara, N. McIntyre, and F. Concha, “At the crossroads: can desalination be a suitable public policy solution to address water scarcity in Chile’s mining zones?,” J. Environ. Manage., vol. 258, Mar. 2020, doi: 10.1016/j.jenvman.2019.110039.
A. Fontalvo et al., “System-level comparison of sodium and salt systems in support of the Gen3 liquids pathway,” AIP Conf. Proc., vol. 2445, no. 1, p. 030007, May 2022, doi: 10.1063/5.0087911.
M. J. Blanco, K. Milidonis, and A. M. Bonanos, “Updating the PSA sun position algorithm,” Sol. Energy, vol. 212, pp. 339–341, Dec. 2020, doi: 10.1016/j.solener.2020.10.084.
Y. Wang et al., “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy, vol. 195, pp. 461–474, Jan. 2020, doi: 10.1016/j.solener.2019.11.035.
T. Neises and C. Turchi, “Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C,” Sol. Energy, vol. 181, pp. 27–36, Mar. 2019, doi: 10.1016/j.solener.2019.01.078.
S. Powers, “Gen 3 CSP Topic 1-Phase 3 Test Facility Down-Selection Criteria. 2019,” United States Dep. Energy Off. Energy Effic. Renew. Energy.
A. H. Reksten, M. S. Thomassen, S. Møller-Holst, and K. Sundseth, “Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development,” Int. J. Hydrogen Energy, vol. 47, no. 90, pp. 38106–38113, Nov. 2022, doi: 10.1016/J.IJHYDENE.2022.08.306.
H. Zhang and T. Yuan, “Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations,” Appl. Energy, vol. 324, no. May, p. 119760, 2022, doi: 10.1016/j.apenergy.2022.119760.
G. Fambri, C. Diaz-Londono, A. Mazza, M. Badami, T. Sihvonen, and R. Weiss, “Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration,” Appl. Energy, vol. 312, no. February, p. 118743, 2022, doi: 10.1016/j.apenergy.2022.118743.
IEA, “Global Hydrogen Review 2022,” 2022. doi: 10.1787/a15b8442-en.
I. E. Agency, “IEA (2023), Energy Technology Perspectives 2023, IEA, Paris https://www.iea.org/reports/energy-technology-perspectives-2023, License: CC BY 4.0,” 2023.
D. Peterson, J. Vickers, and D. Desantis, “DOE Hydrogen and Fuel Cells Program Record: Hydrogen Production Cost From PEM Electrolysis 2019,” DOE Hydrog. Fuel Cells Progr. Rec., pp. 1–15, 2020, [Online]. Available: http://www.hydrogen.energy.gov/h2a_prod_studies.html:
R. Hancke, T. Holm, and Ø. Ulleberg, “The case for high-pressure PEM water electrolysis,” Energy Convers. Manag., vol. 261, Jun. 2022, doi: 10.1016/J.ENCONMAN.2022.115642.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Ignacio Javier Arias Olivares, Felipe G. Battisti, José Cardemil, Loreto Valenzuela, Rodrigo Escobar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-03-04
Published 2025-03-21
Funding data
-
Agencia Nacional de Investigación y Desarrollo
Grant numbers ANID PFCHA/Doctorado Nacional 2021-21210053 -
Agencia Nacional de Investigación y Desarrollo
Grant numbers ANID/FONDECYT Project 3220792