Testing and Validation of Innovative on-Site Solar Field Measurement Techniques to Increase Power Tower Plant Performance: The LEIA Project

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.777

Keywords:

Solar Power Tower Plants, Smart Solar Field, Smart Receiver Control, Operation and Maintenance Control Strategies

Abstract

LEIA project aims to contribute to the development of the next generation of central receiver power plants focusing on validating a combination and integration of pre-commercial solar field control and O&M solutions for the central tower receiver technology using molten salts, as the most promising cost-effective solution with the highest market penetration potential. To effectively remove the existing technical and industrial barriers to optimize central receiver and heliostat field operation & maintenance and thus to improve overall CSP performance, the following innovations are being developed: 1) Smart heliostat field control, 2) Smart control systems, 3) Solar Field Operation and Maintenance control strategies. These developments will be tested and demonstrated in three flagship operational environments: a) Cerro Dominador (Chile), b) CIEMAT – PSA (Spain), and c) CENER – Tudela (Spain).

Downloads

Download data is not yet available.

References

1. https://iea.blob.core.windows.net/assets/888004cf-1a38-4716-9e0c-3b0e3fdbf609/WorldEnergyOutlook2021.pdf

2. https://www.iea-shc.org/solar-heat-worldwide

3. https://ec.europa.eu/energy/en/topics/technology-and-innovation/strategic-energy-technology-plan

4. Cruz N.C., Monterreal R., Redondo J.L., Fernandez-Reche J., Enrique R., Ortigosa P.M.: Optical characterization of heliostat facets based on Computational Optimization. Sol. Energy 248, 1-15. https://doi.org/10.1016/j.solener.2022.10.043.

5. Casanova M., Ballestrin J., Monterreal R., Fernandez-Reche J., Enrique R., Avila-Marin A.: Improvements in the measurement of high solar irradiance on a 300 kWth volumetric receiver. Renew. Energy 201(1), 441-449. https://doi.org/10.1016/j.renene.2022.10.080.

6. Röger, M., Herrmann, P., Ulmer, S., Ebert, M., Prahl, C., Göhring, F.: Techniques to Measure Solar Flux Density Distribution On Large-Scale Receivers, J. Sol. Energy Eng. 136(3), 031013 (10 pages), 2014, https://doi.org/10.1115/1.4027261

7. Offergeld, M., Röger, M., Stadler. H., Gorzalka, P., Hoffschmidt, B.: Flux Density Measurement for Industrial-Scale Solar Power Towers Using the Reflection off the Absorber, AIP Conference Proceedings 2126, 110002 (2019), SolarPACES, Casablanca, 2018, https://doi.org/10.1063/1.5117617

8. Bradshaw et al.: Final Test and Evaluation Results from the Solar Two Project, Technical Report, SAND2002-0120, Jan 2002 (https://doi.org/10.2172/793226)

9. Wolfertstetter, F., Fonk, R., Prahl, C., Röger, M., Wilbert, S., Fernández-Reche, J.: Airborne soiling measurements of entire solar fields with Qfly, AIP Conference Proceedings 2303, 100008 (2020); https://doi.org/10.1063/5.0028968

Downloads

Published

2024-09-16

How to Cite

Avila-Marin, A., Fernández-Reche, J., Monterreal, R., Ballestrin, J., Gallego, J. F., Casanova, M., … Zurita, A. (2024). Testing and Validation of Innovative on-Site Solar Field Measurement Techniques to Increase Power Tower Plant Performance: The LEIA Project. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.777

Conference Proceedings Volume

Section

Receivers and Heat Transfer Media and Transport: Point Focus Systems
Received 2023-10-02
Accepted 2024-08-07
Published 2024-09-16

Funding data