Remote Measurement of Heliostat Reflectivity with the Backward Gazing Procedure

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.760

Keywords:

Solar Concentrator, Heliostat, Reflectivity Measurement, Shape Measurement

Abstract

Concentrated solar power is a promising technique enabling renewable energy production with large scale solar power plants in the near future. Estimating quantitatively the reflectivity of a solar concentrator is a major issue, since it has a significant impact on the flux distribution formed at the solar receiver. Moreover, it is desirable that the mirrors can be measured during operation in order to evaluate environmental factors such as day/night thermal cycles or soiling and ageing effects at the reflective surfaces. For that purpose, a backward gazing method that was originally developed to measure mirror shape and misalignment error was developed. The method operates in quasi real-time without disturbing the heat production process. It was successfully tested at the Themis solar tower power plant in Targasonne, France. Its basic principle consists in acquiring four simultaneous images of a Sun-tracking heliostat, captured from different observation points located near the thermal receiver. The images are then processed with a minimization algorithm allowing the determination of the reflectance and slopes errors of the mirrors. In this communication, it is shown that the algorithm allows one to get quantitative reflectivity maps at the surface of the heliostat. The measurement is fully remote and is used to evaluate surface reflectivity that depends on optical coatings quality and soiling effects. Preliminary results obtained with a Themis heliostat are presented. They show that reflectivity measurements can be carried out within repeatability about ± 5% Peak-to-Valley (PTV) and 1% RMS. Ways to improving these numbers are discussed in the paper.

Downloads

Download data is not yet available.

References

[1] G. Picotti, R. Simonetti, T. Schmidt, M.E. Cholette, A. Heimsath, S.J. Ernst, G. Manzolini, “Evaluation of reflectance measurement techniques for artificially soiled solar reflectors: experimental campaign and model assessment,” Solar Energy Materials and Solar Cells vol. 231, n°111321, 2021, doi: https://doi.org/10.1016/j.solmat.2021.111321.

[2] R.B. Pettit, “Characterizing solar mirror materials using portable reflectometer,” Sandia Report, Albuquerque, SAND82-1714, 1982, doi: https://doi.org/10.2172/6718528

[3] A. Fernández-García, F. Sutter, L. Martínez-Arcos, C. Sansom, F. Wolfertstetter, C. Delor, “Equipment and methods for measuring reflectance of concentrating solar reflector materials,” Solar Energy Materials and Solar Cells vol. 167, p. 28-52; 2017, doi: https://doi.org/10.1016/j.solmat.2017.03.036.

[4] I. Salinas, C. Heras, C. Alcañiz, D. Izquierdo, N. Martínez, R. Alonso, “Portable solar spectrum reflectometer for planar and parabolic mirrors in solar thermal energy plants,” Solar Energy vol. 135, p. 446-454, 2016, doi: https://doi.org/10.1016/j.solener.2016.06.010.

[5] R. Wang, P. Borghesani, M.E. Cholette, B. Duck, L. Ma, T.A. Steinberg, “In-situ reflectivity monitoring of heliostats using calibration cameras,” SolarPaces 2018, AIP Conference Proceedings vol. 2126, n°030062, 2019, doi: https://doi.org/10.1063/1.5117574.

[6] F. Wolfertstetter, R. Fonk, C. Prahl, M. Röger, S. Wilbert, J. Fernández-Reche, “Airborne soiling measurements of entire solar fields with QFLy”, SolarPaces 2019, AIP Conference Proceedings vol. 2303, n°100008, 2020, doi: https://doi.org/10.1063/5.0028968.

[7] F. Hénault, C. Royere, “Concentration du rayonnement solaire: analyse et évaluation des réponses impulsionelles et des défauts de réglage de facettes réfléchissantes”, J. Optics vol. 20, n°5, 1989.

[8] M. Coquand, F. Hénault, C. Caliot, “Backward-gazing method for measuring solar concentrators shape errors,” Applied Optics vol. 56, p. 2029-203, 2017, doi: https://doi.org/10.1364/AO.56.002029.

[9] M. Coquand, C. Caliot, F. Hénault, “Tracking and shape errors measurement of concentrating heliostats,” Proceedings of the SPIE vol. 10379, n°103790N-1, ,2017, doi! https://doi.org/10.1117/12.2272791.

[10] M. Coquand, F. Hénault, C. Caliot, “Numerical identification of mirror shapes with the backward-gazing method using an actual solar profile,” SolarPaces 2017, AIP conferences series vol. 2033, n°040010, 2018, doi: https://doi.org/10.1063/1.5067046.

[11] M. Coquand, “Méthode de rétrovisée pour la caractérisation de surfaces optiques dans une installation solaire à concentration,” Thèse de Docteur en Sciences, Université de Perpignan Via Domitia, 2018.

[12] P.-H. Defieux, C. Caliot, F. Hénault, “Hybrid optical method for characterizing a heliostat field in a concentrated solar power plant,” SolarPaces 2020, AIP Conference Proceedings vol. 2303, n°100002, 2020, doi: https://doi.org/10.1063/5.0029270.

[13] F. Hénault, C. Caliot, M. Coquand, P.-H. Defieux, E. Guillot, “Sun backward gazing method for measuring opto-mechanical errors of solar concentrators: experimental results,” Applied Optics vol. 59, p.9861-9877, 2020, doi: https://doi.org/10.1364/AO.399595.

[14] A. Sonn, H. Dor, J. Ma, T. Cook, S. Schell, C. Gregory, “Estimating orientations of tracking heliostats using circumsolar radiance,” SolarPaces 2020, AIP Conference Proceedings vol. 2445, n° 070013, 2022, doi: https://doi.org/10.1063/5.0087117.

[15] P. Jose, “The flux through the focal spot of a solar furnace,” Solar Energy vol. 1, p. 19-22, 1957, doi: https://doi.org/10.1016/0038-092X(57)90167-6.

[16] F. Hénault, M. Coquand, P.-H. Defieux, C. Caliot, “Sun backward gazing method with multiple cameras for characterizing solar concentrators,” Solar Energy vol. 166, p. 103-114, 2018, doi: https://doi.org/10.1016/j.solener.2018.03.042.

Downloads

Published

2024-10-18

How to Cite

Hénault, F., Flamant, G., & Caliot, C. (2024). Remote Measurement of Heliostat Reflectivity with the Backward Gazing Procedure. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.760
Received 2023-09-22
Accepted 2024-10-15
Published 2024-10-18