Integrated Solar Production of Fertilisers and Fuels

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.744

Keywords:

Ammonia, Hydrogen, Solar Chemistry, Solar Fertiliser

Abstract

Solar fertiliser production including the internal utilisation of the side-product oxygen is analysed as one promising example of an innovative process utilising renewable energy resources and addressing the aspect of integrated production – here in the case of nitrogen containing fertilisers. Alternative methods to supply solar energy into the energy intensive generation of precursors needed for nitrate-based fertiliser via the Haber Bosch and Ostwald processes are introduced. Those methods are assessed in a comparative way through process design and simulation with a focus on oxygen injection inside the NOx combustion of the Ostwald process and through calculation of its economic impacts.

Downloads

Download data is not yet available.

References

J. J. Klemes, P. Sabev Varbanov, S. R. Wan Wan Alwi, Z. A. Manan, Process integration and intensification, saving energy, water and Resources, De Gruyter 2014. https://doi.org/10.1515/9783110306859

S. Budinis, A. Gouy, P. Levi, H. Mandová, T. Vass, International Energy Agency, Ammonia Technology Roadmap, Towards more sustainable nitrogen fertiliser production, 2021.

N. I. Ilchenko, Catalytic Oxidation of Ammonia, Russian Chemical Reviews 45.12 (Dec. 1976), 1119–1134

M. Koukolik, J. Marek, Mathematical model of HNO3 Oxidation­Absorption equipment, In: Proc. Fourth European Symp. on Chem. Reaction Eng. (1968).

M. Thiemann, E. Scheibler, and K. Wiegand, Nitric Acid, Nitrous Acid, and Nitrogen Oxides, In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley­VCH Verlag GmbH & Co. KGaA, June 2000.

P. Sun and A. Elgowainy, Updates of Hydrogen Production from SMR Process in GREET 2019; Argonne National Laboratory: Lemont, IL, USA, 2019.

Global Hydrogen Review 2021. In: IEA Publications (2021). URL: http://www.iea.org/about/contact.

C. Sattler, M. Roeb, C. Agrafiotis, D. Thomey, Solar hydrogen production via sulphur based thermochemical water-splitting, Solar Energy 156, 30-47, 2017, DOI: https://doi.org/10.1016/j.solener.2017.05.060

C. Agrafiotis, D. Thomey, L. de Oliveira, C. Happich, M. Roeb, C. Sattler, N. I. Tsongidis, K. G. Sakellariou, C. Pagkoura, G. Karagiannakis, A. G. Konstandopoulos, D. Pomykalska, M. Zagaja, D. Janus, Oxide particles as combined heat storage medium and sulphur trioxide decomposition catalysts for solar hydrogen production through sulphur-based cycles, International Journal of Hydrogen Energy, 44, 2019, 9830-9840, https://doi.org/10.1016/j.ijhydene.2018.11.056

A. A. Moghaddam, U. Krewer, Poisoning of Ammonia Synthesis Catalyst Considering Off­Design Feed Compositions, Catalysts 10.1225 (2020), 1–16, https://doi.org/10.3390/catal10111225

R. Stokes. A History of the International Industrial Gases Industry from the 19th to the 21st Centuries”. In: Cambridge University Press (2015)

S. Li, V. M. Wheeler, P. B. Kreider, W. Lipiński, Thermodynamic Analyses of Fuel Production via Solar­Driven Metal Oxide Redox Cycling, Energy & Fuels 32.10 (2018), 10848–10863, https://doi.org/10.1021/acs.energyfuels.8b02081

J. Vieten, D. Guban, M. Roeb, B. Lachmann, S. Richter, C. Sattler, Ammonia and Nitrogen­based Fertilizer Production by Solar thermochemical Processes, AIP Conference Proceedings, 2303, 170016. American Institute of Physics (AIP). DOI: https://doi.org/10.1063/5.0030980.

J. Vieten, B. Bulfin, P. Huck, M. Horton, D. Gubán, L. Zhu, Y. Lu, K. A. Persson, M. Roeb, C. Sattler, Materials design of perovskite solid solutions for thermochemical applications. Energy & Environmental Science, 2019. 12: p. 1369-1384, DOI: https://doi.org/10.1039/C9EE00085B.

D. Notter, M.-E. Gálvez, B. Bulfin, A. Steinfeld, Solar-driven thermochemical production of ammonia via a metal nitride cycle, AIChE Annual Meeting 2022, Phoenix, AZ, USA, November 13-18, 2022..

X. Gao, H. E. van Bush, J. E. Miller, A. Bayon, I. Ermanoski, A. Ambrosini, E. B. Stechel, Synthesis and Structural Study of Substituted Ternary Nitrides for Ammonia Production, Chem. Matter, online preprint July 21, 2023, https://doi.org/10.1021/acs.chemmater.3c00606

M. L. Wagner and W. Plains. Direct oxygen injection in nitric acid production, European Patent EP0808797B1, 2003.

S. Bhatia, F. J. Jackow, R. Vlaming, J. Koenig, Oxygen injection in nitric acid production. European Patent EP0799794A1, 1997.

R. W. Watson and P. G. Blakley, Oxygen­enrichment columnar absorption process for making nitric acid, US Patent US4183906A ,1980.

N. Neumann, D. Baumstark, P. López Martínez, N. Monnerie, M. Roeb, Exploiting synergies between sustainable ammonia and nitric acid production: A techno-economic assessment, Journal of Cleaner Production 438 (2024) 140740.

P. López Martínez, Techno­economic analysis of a solar ammonia and fertilizer production, Master Thesis, Technical University of Denmark (DTU), Lyngby, Denmark, 2022.

S.Vaclav, Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production, Tech. Rep. Massachusetts Institute of Technology, 2001.

M. Kamphus. Emission monitoring in nitric acid plants, Nitrogen + Syngas 328 (2014), 48 –53.

Downloads

Published

2024-07-24

How to Cite

Roeb, M., López Martínez, P., Neumann, N., Baumstark, D., Klaas, L., Kriechbaumer, D., … Sattler, C. (2024). Integrated Solar Production of Fertilisers and Fuels. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.744
Received 2023-09-19
Accepted 2024-04-24
Published 2024-07-24

Funding data