Heliostat Consortium: Gap Analysis on Wind Load for Achieving a Fully Competitive Heliostat Industry
DOI:
https://doi.org/10.52825/solarpaces.v1i.726Keywords:
Aerodynamic Coefficients, Turbulent Flow Field, Structural Dynamics, Heliostat Wind LoadAbstract
The Heliostat Consortium (HelioCon) Wind Load Subtask was initiated with the aim of bringing research work pertaining to wind load measurement, characterization, and prediction taking place across several tasks, including Advanced Manufacturing, Components and Controls, and Field Deployment. The cross-cutting wind load subtopic in the HelioCon roadmap report [1] highlighted standardized methods and tools that are needed for a more detailed understanding of the static and dynamic loads on a heliostat. This will enable cost reduction of wind-dependent heliostat components to avoid unnecessarily conservative, overly constrained designs and increase field efficiency/reliability, to reduce the risk of component failures due to high-wind events (>15 m/s). Gaps related to heliostat wind load include site characterization for wind measurements, critical load cases for heliostat design, turbulence impacts on heliostat tracking error, testing of heliostat array configurations, understanding spatial variation of maximum loads across the solar field, and heliostat field layout and operating strategies. The recommended highest-priority pathway as first steps taken by HelioCon to address these gaps are to develop site characterization guidelines for heliostat design and field load measurements.
Downloads
References
G. Zhu, C. Augustine, R. Mitchell, M. Muller, P. Kurup, A. Zolan, S. Yellapantula, R. Brost, K. Armijo, J. Sment, R. Schaller, M. Gordon, M. Collins, J. Coventry, J. Pye, M. Cholette, G. Picotti, M. Arjomandi, M. Emes, D. Potter and M. Rae, Advancing Heliostat Technologies for Concentrating Solar-Thermal Power: Heliostat Consortium (HelioCon) Roadmap (2022). https://doi.org/10.2172/1888029
A. Pfahl, J. Coventry, M. Röger, F. Wolfertstetter, J. F. Vásquez-Arango, F. Gross, M. Arjomandi, P. Schwarzbözl, M. Geiger and P. Liedke, Progress in heliostat development, Solar Energy 152, 3-37 (2017). https://doi.org/10.1016/j.solener.2017.03.029
D. T. Griffith, A. C. Moya, C. K. Ho and P. S. Hunter, Structural dynamics testing and analysis for design evaluation and monitoring of heliostats, Journal of Solar Energy Engineering 137, 021010 (2015). https://doi.org/10.1115/1.4028561.
M. Mehos, H. Price, R. Cable, D. Kearney, B. Kelly, G. Kolb and F. Morse, Concentrating solar power best practices study (National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020). https://doi.org/10.2172/1665767
M. Emes, A. Jafari, A. Pfahl, J. Coventry and M. Arjomandi, A review of static and dynamic heliostat wind loads, Solar Energy 225, 60-82 (2021). https://doi.org/10.1016/j.solener.2021.07.014
AS/NZS 1170.2, Structural Design Actions - Part 2: Wind actions (Standards Australia and Standards New Zealand, Sydney, 2011), pp. 26-41.
ASCE 7-02, Minimum design wind loads for buildings and other structures, American Society of Civil Engineers, Reston, Virginia, 2002, ASCE 7-02.
J. A. Peterka and R. G. Derickson, Wind load design methods for ground-based heliostats and parabolic dish collectors (Sandia National Laboratories, Albuquerque, New Mexico, 1992), SAND92-7009. https://doi.org/10.2172/7105290
J. A. Peterka, Z. Tan, J. E. Cermak and B. Bienkiewicz, Mean and peak wind loads on heliostats, Journal of Solar Energy Engineering 111, 158-164 (1989). https://doi.org/10.1115/1.3268302
A. Pfahl, M. Buselmeier and M. Zaschke, Wind loads on heliostats and photovoltaic trackers of various aspect ratios, Solar Energy 85, 2185-2201 (2011). https://doi.org/10.1016/j.solener.2011.06.006
M. Arjomandi, M. Emes, A. Jafari, J. Yu, F. Ghanadi, R. Kelso, B. Cazzolato, J. Coventry and M. Collins, A summary of experimental studies on heliostat wind loads in a turbulent atmospheric boundary layer, AIP Conference Proceedings 2303, 030003 (2020). https://doi.org/10.1063/5.0028676
C. K. Ho, D. T. Griffith, J. Sment, A. C. Moya, J. M. Christian, J. K. Yuan and P. S. Hunter, Dynamic Testing and Analysis of Heliostats to Evaluate Impacts of Wind on Optical Performance and Structural Fatigue, in: SolarPACES, AIP Conference Proceedings, Marrakech, Morocco, 2012, pp. 22695.
K. Blume, M. Röger, T. Schlichting, A. Macke and R. Pitz-Paal, Dynamic photogrammetry applied to a real scale heliostat: Insights into the wind-induced behavior and effects on the optical performance, Solar Energy 212, 297-308 (2020). https://doi.org/10.1016/j.solener.2020.10.056
J. W. Strachan, Revisiting the BCS, a Measurement System for Characterizing the Optics of Solar Collectors (Sandia Technical Report SAND92-2789C, 1992).
A. Jafari, F. Ghanadi, M. J. Emes, M. Arjomandi and B. S. Cazzolato, Measurement of unsteady wind loads in a wind tunnel: scaling of turbulence spectra, Journal of Wind Eng and Ind Aero 193, 103955 (2019b). https://doi.org/10.1016/j.jweia.2019.103955
A. Pfahl, M. Randt, F. Meier, M. Zaschke, C. Geurts and M. Buselmeier, A holistic approach for low cost heliostat fields, Energy Procedia 69, 178-187 (2015). https://doi.org/10.1016/j.egypro.2015.03.021
A. Jafari, F. Ghanadi, M. Arjomandi, M. J. Emes and B. S. Cazzolato, Correlating turbulence intensity and length scale with the unsteady lift force on flat plates in an atmospheric boundary layer flow, Journal of Wind Eng and Ind Aero 189, 218-230 (2019a). https://doi.org/10.1016/j.jweia.2019.03.029
M. J. Emes, A. Jafari, J. Coventry and M. Arjomandi, The influence of atmospheric boundary layer turbulence on the design wind loads and cost of heliostats, Solar Energy 207, 796-812 (2020). https://doi.org/10.1016/j.solener.2020.07.022
J. R. Wolmarans and K. Craig, One-way fluid-structure interaction of a medium-sized heliostat using scale-resolving CFD simulation, Solar Energy 191, 84-99 (2019). https://doi.org/10.1016/j.solener.2019.08.068
S. Yellapantula, G. Vijayakumar, D. Kesseli, S. Ananthan and M. Mehos, "Aerodynamic analysis of wind loading on parabolic trough collectors using high-fidelity CFD modeling," in AIP Conference Proceedings,(AIP Conference Proceedings, 2022), pp. 030023. https://doi.org/10.1063/5.0087124
L. M. Murphy, Wind loading on tracking and field-mounted solar collectors (Solar Energy Research Institute, Golden, USA, 1980), SERI-TP-632-958. https://doi.org/10.2172/6889663
M. Emes, A. Jafari, M. Collins, S. Wilbert, L. Zarzalejo, S. Siegrist and M. Arjomandi, Stowing strategy for a heliostat field based on wind speed and direction, AIP Conference Proceedings 2445, 120011 (2022). https://doi.org/10.1063/5.0085677
J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, D. J. Gochis, R. Ahmadov and S. E. Peckham, The weather research and forecasting model: Overview, system efforts, and future directions, Bulletin of the American Meteorological Society 98, 1717-1737 (2017). https://doi.org/10.1175/BAMS-D-15-00308.1
P. A. Jiménez, J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez and E. García-Bustamante, A revised scheme for the WRF surface layer formulation, Monthly weather review 140, 898-918 (2012). https://doi.org/10.1175/MWR-D-11-00056.1
M. J. Emes, A. Jafari and M. Arjomandi, A feasibility study on the application of mesh grids for heliostat wind load reduction, Solar Energy 240, 121-130 (2022). https://doi.org/10.1016/j.solener.2022.05.033
P. Kurup, S. Akar, S. Glynn, C. Augustine and P. Davenport, Cost Update: Commercial and Advanced Heliostat Collectors (National Renewable Energy Lab.(NREL), Golden, CO (United States), 2022). https://doi.org/10.2172/1847876
A. Pfahl, M. Buselmeier and M. Zaschke, "Determination of wind loads on heliostats," in Proceedings of the 17th SolarPACES Conference,(Proceedings of the 17th SolarPACES Conference, Granada, Spain, 2011).
A. Jafari, M. Emes, B. Cazzolato, F. Ghanadi and M. Arjomandi, An experimental investigation of unsteady pressure distribution on tandem heliostats, AIP Conference Proceedings 2303, 030022 (2020). https://doi.org/10.1063/5.0028678
A. Jafari, M. Emes, B. Cazzolato, F. Ghanadi and M. Arjomandi, Turbulence characteristics in the wake of a heliostat in an atmospheric boundary layer flow, Physics of Fluids 32, 045116 (2020). https://doi.org/10.1063/5.0005594
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Matthew Emes, Shashank Yellapantula, Jeremy Sment, Kenneth Armijo, Matthew Muller, Mark Mehos, Randy Brost, Maziar Arjomandi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Australian Renewable Energy Agency
Grant numbers 1-SRI002 -
Solar Energy Technologies Office
Grant numbers DE-EE00038488/38714