A Cost-Effective Open Volumetric Air Receiver Design Based on Free Floating Stackable Absorber Modules
DOI:
https://doi.org/10.52825/solarpaces.v1i.713Keywords:
CSP, High-Temperature Process Heat, Ceramic Foam ReceiverAbstract
The CAPTure Open Volumetric Air Receiver (OVAR) design is based on ceramic stackable “free floating” absorber modules that form the receiver structure and avoid a complex metallic double membrane design. The novel receiver design has been validated at small-scale (15 kWth) at a solar simulator, as well as on the top of an experimental tower at 300 kWth, up to absorber module outlet temperatures above 900ºC. The novel OVAR concept is attractive for both the concentrated solar power (CSP) sector, as well as for high-temperature process heat supply. The thermal efficiency of the receiver concept is expected to be above 80% at outlet temperatures of 900ºC.
Downloads
References
F. Zaversky, I. Les, P. Sorbet, M. Sánchez, B. Valentin, F. Siros, J.-F. Brau, J. McGuire, and F. Berard, "CAPTure Concept Specification and Optimization (Deliverable 1.4)," ed. https://cordis.europa.eu/project/id/640905/results: European Commission, 2020.
A. L. Ávila-Marín, "Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review," Solar Energy, vol. 85, pp. 891-910, 2011. doi: https://doi.org/10.1016/j.solener.2011.02.002.
B. Hoffschmidt, F. M. Téllez, A. Valverde, J. Fernández, and V. Fernández, "Performance Evaluation of the 200-kWth HiTRec-II Open Volumetric Air Receiver," Journal of Solar Energy Engineering, vol. 125, pp. 87-94, 2003. doi: https://doi.org/10.1115/1.1530627.
F. Téllez, "Thermal performance evaluation of the 200kWth "SolAir" volumetric solar receiver," ed. Madrid, Spain: CIEMAT-PSA, 2003.
K. Hennecke, B. Hoffschmidt, G. Koll, P. Schwarzbözl, J. Göttsche, M. Beuter, and T. Hartz, "The solar power tower Jülich - A solar thermal power plant for test and demonstration of air receiver technology," presented at the ISES World Congress, Beijing, China, 2007.
F. Zaversky, J. Fernández-Reche, M. Casanova, R. Monterreal, R. Enrique, A. L. Avila-Marin, S. Martínez, M. Schmitz, A. Castellanos, R. Mallo, S. Herrero, S. López, I. Mesonero, I. Pérez, J. McGuire, and F. Berard, "Experimental Testing of a 300 kWth Open Volumetric Air Receiver (OVAR) Coupled with a Small-Scale Brayton Cycle. Operating Experience and Lessons Learnt," 2022.
K. Wieghardt, D. Laaber, V. Dohmen, P. Hilger, D. Korber, K.-H. Funken, and B. Hoffschmidt, "Synlight - A new facility for large-scale testing in CSP and solar chemistry," AIP Conference Proceedings, vol. 2033, p. 040042, 2018.
F. Zaversky, X. Rández, J. Baigorri, and M. Sánchez, "The volumetric effect indicator – A new dimensionless characteristic number for the optimum design and operation of volumetric solar receivers," Solar Energy, vol. 259, pp. 119-129, 2023/07/15/ 2023. doi: https://doi.org/10.1016/j.solener.2023.04.054.
F. Zaversky, L. Aldaz, M. Sánchez, A. L. Ávila-Marín, M. I. Roldán, J. Fernández-Reche, A. Füssel, W. Beckert, and J. Adler, "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, vol. 210, pp. 351-375, 2018. doi: https://doi.org/10.1016/j.apenergy.2017.11.003.
S. Tescari, A. Singh, C. Agrafiotis, L. de Oliveira, S. Breuer, B. Schlögl-Knothe, M. Roeb, and C. Sattler, "Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant," Applied Energy, vol. 189, pp. 66-75, 2017. doi: https://doi.org/10.1016/j.apenergy.2016.12.032.
F. Zaversky, F. Cabello Núñez, A. Bernardos, and M. Sánchez, "A Novel High-Efficiency Solar Thermal Power Plant Featuring Electricity Storage - Ideal for the Future Power Grid with High Shares of Renewables," 2022.
S. Purohit and G. A. Brooks, "Chapter Five - Application of solar thermal energy to metallurgical processes," in Advances in Chemical Engineering. vol. 58, W. Lipiński, Ed., ed: Academic Press, 2021, pp. 197-246.
J. Hinkley and C. Agrafiotis, "Chapter 9 - Solar Thermal Energy and Its Conversion to Solar Fuels via Thermochemical Processes," in Polygeneration with Polystorage for Chemical and Energy Hubs, K. R. Khalilpour, Ed., ed: Academic Press, 2019, pp. 247-286.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Fritz Zaversky, Xabier Rández, Javier Baigorri, Marcelino Sánchez, Antonio Ávila-Marín, Jesús Fernández-Reche, Alexander Füssel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
European Commission
Grant numbers 640905;823802