Hybrid Solar-Biomass With Energy Storage Comprehensive Analysis for District Heating Systems
DOI:
https://doi.org/10.52825/solarpaces.v1i.685Keywords:
Storage, Simulation, DesignAbstract
This study analyses the effect of solar field size, biomass boiler and thermal storage capacity for a time dependant demand. The main results to obtain from the simulation will be solar share, biomass consumption and annual coverage with the proposed systems and a selection of the optimum size of these variables for the study case design. Results gathered show that, while there is an increment in solar energy obtained while selecting bigger solar panel areas, tank relations for these big systems show improvement in smaller sizes, visible in the increment of biomass energy used when bigger storage sizes to solar collector areas used.
Downloads
References
M. A. Sayegh et al., “Trends of European research and development in district heating technologies,” Renewable and Sustainable Energy Reviews, vol. 68. Elsevier Ltd, pp. 1183–1192, Feb. 01, 2017. doi: https://doi.org/10.1016/j.rser.2016.02.023.
C. Vazquez and M. Victoria, “D2.3 District Heating and Cooling Stock at EU level.”
M. C. Rodríguez-Hidalgo, P. A. Rodríguez-Aumente, A. Lecuona, M. Legrand, and R. Ventas, “Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank,” Appl Energy, vol. 97, pp. 897–906, 2012, doi: https://doi.org/10.1016/j.apenergy.2011.12.088.
S. A. Klein and et all, “TRNSYS 18: A Transient System Simulation Program,” Solar Energy Laboratory, University of Wisconsin, Madison, USA, 2017. http://sel.me.wisc.edu/trnsys. (accessed Jun. 15, 2022).
Alberto Abánades, “Analysis of the experimental district heating and cooling facility in Alcalá in the framework of the W.E. District Project,” in 16th International Conference on Heat Transfer, fluid Mechanics and Thermodynamics, Aug. 2022, pp. 150–157.
J. J. Roncal-Casano, “Development of TRNSYS Macros for Solar Resource Integration in a District Heating and Cooling Network: W.E. DISTRICT Project,” in Solar Paces 2021, doi: https://doi.org/10.1063/5.0149410.
Y. Zhang, “Use jEPlus as an Efficient Building Design Optimisation Tool,” CIBSE ASHRAE technical symposium, 2012. [Online]. Available: https://www.researchgate.net/publication/304404398
A. Ivančić, J. Romaní, J. Salom, and M. V. Cambronero, “Performance assessment of district energy systems with common elements for heating and cooling,” Energies (Basel), vol. 14, no. 8, Apr. 2021, doi: https://doi.org/10.3390/en14082334.
Red Eléctria Española, “COMPONENTES DEL PRECIO FINAL Y ENERGÍA DEL CIERRE (€/MWh | MWh),” Jun. 2022. COMPONENTES DEL PRECIO FINAL Y ENERGÍA DEL CIERRE (€/MWh | MWh) (accessed Jun. 15, 2022).
AVEBIOM (Asociación Española de Valorización Energética de la Biomasa), “Índice AVEBIOM Precio Medio Pellets de Madera al consumidor final,” Jul. 18, 2022. https://www.avebiom.org/proyectos/indice-precios-biomasa-al-consumidor?language_content_entity=es (accessed Jun. 15, 2022).
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Juan José Roncal Casano, Paolo Taddeo, Javier Muñoz Antón, Joaquim Romaní Picas, Javier Rodriguez Martín, Alberto Abanades
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Horizon 2020
Grant numbers 857801