Seasonal Performance Characterization of a Gen3 Particle-Based Concentrating Solar Plant With a Spatially Resolved Transient Thermal Storage Model

Authors

DOI:

https://doi.org/10.52825/solarpaces.v1i.673

Keywords:

Dynamic System Modelling, Particle Thermal Storage, Gen3 CSP

Abstract

Particle-based Gen3 Concentrating Solar Power (CSP) can be paired with high-temperature power cycles (>700 °C) and can have built-in long duration (≥10 hours) thermal energy storage if the working particles are stored properly in thermal energy storage bins. Although high-temperature and long-duration thermal energy storage can mitigate daily intermittencies in solar irradiation, seasonal variability in local meteorological conditions can still have a significant impact on the overall performance of CSP systems. Aside from daily cloud coverage affecting incident solar radiation, wind speed and ambient temperature are also significant variables regarding system heat attenuation, component efficiency, and overall solar conversion efficiency. In this work, we present simulation results for a Gen3 CSP prototype system in operation over four weeks throughout the year in Albuquerque, NM. The meteorological conditions are taken directly from the TMY3 data at the Albuquerque International Sunport, where the hourly Direct Normal Irradiation (DNI), wind speed, and ambient temperature are of particular interest. An investigation of the sensitivity of individual components like storage and ducting to the local meteorological conditions is provided and extended to the overall performance of the CSP system. The results from this study show that the particle inlet temperature at the particle-to-sCO2 heat exchanger can change as fast as 30 °C/min under standard operation in a passive mode.

Downloads

Download data is not yet available.

References

L. F. González-Portillo, K. Albrecht, and C. K. Ho, “Techno-economic optimization of CSP plants with free-falling particle receivers,” Entropy, vol. 23, no. 1, pp. 1–24, 2021, doi: https://doi.org/10.3390/e23010076.

R. Singh, S. A. Miller, A. S. Rowlands, and P. A. Jacobs, “Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant,” Energy, vol. 50, no. 1, pp. 194–204, 2013, doi: https://doi.org/10.1016/j.energy.2012.11.029.

S. J. Bae, Y. Ahn, J. Lee, S. G. Kim, S. Baik, and J. I. Lee, “Experimental and numerical investigation of supercritical CO2 test loop transient behavior near the critical point operation,” Appl Therm Eng, vol. 99, pp. 572–582, 2016, doi: https://doi.org/10.1016/j.applthermaleng.2016.01.075.

M. Fernández-Torrijos, K. J. Albrecht, and C. K. Ho, “Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control,” Appl Energy, vol. 226, no. March, pp. 595–606, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.06.016.

M. T. Luu, D. Milani, R. McNaughton, and A. Abbas, “Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle,” Appl Energy, vol. 199, pp. 247–263, 2017, doi: https://doi.org/10.1016/j.apenergy.2017.04.073.

M. T. Luu, D. Milani, R. McNaughton, and A. Abbas, “Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton power cycle,” Appl Therm Eng, vol. 136, no. March, pp. 682–700, 2018, doi: https://doi.org/10.1016/j.applthermaleng.2018.03.021.

M. T. Luu, D. Milani, R. McNaughton, and A. Abbas, “Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems,” Energy, vol. 124, pp. 752–771, 2017, doi: https://doi.org/10.1016/j.energy.2017.02.040.

N. Schroeder, H. Laubscher, B. Mills, and C. K. Ho, “Receiver outlet temperature con-trol for falling particle receiver applications,” Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021, pp. 1–7, 2021, doi: https://doi.org/10.1115/ES2021-62319.

K. Plewe, J. N. Sment, M. J. Martinez, C. K. Ho, and D. Chen, “Transient Thermal Performance of High-Temperature Particle Storage Bins.” in SolarPACES 2020 Conference Proceedings, 2020.

K. Plewe, J. N. Sment, K. Albrecht, C. K. Ho, and D. Chen, “Transient System Analysis of a Gen3 Particle-Based CSP Plant with Spatially Resolved Thermal Storage Charging and Discharging.” in SolarPACES 2021 Conference Proceedings, 2021.

B. H. Mills, C. K. Ho, N. R. Schroeder, R. Shaeffer, H. F. Laubscher, and K. J. Albrecht, “Design Evaluation of a Next‐Generation High‐Temperature Particle Receiver for Concentrating Solar Thermal Applications,” Energies (Basel), vol. 15, no. 5, 2022, doi: https://doi.org/10.3390/en15051657.

B. Mills, B. Schroeder, L. Yue, R. Shaeffer, and C. K. Ho, “Optimizing a falling particle receiver geometry using CFD simulations to maximize the thermal efficiency,” AIP Conf Proc, vol. 2303, no. December, 2020, doi: https://doi.org/10.1063/5.0029331.

C. K. Ho, K. J. Albrecht, L. Yue, B. Mills, J. N. Sment, J. Christian, and M. Carlson, “Overview and Design Basis for the Gen 3 Particle Pilot Plant (G3P3),” in SolarPACES 2019 Conference Proceedings, 2019.

L. F. González-Portillo, R. Abbas, K. Albrecht, and C. Ho, “Analysis of optical properties in particle curtains,” Solar Energy, vol. 213, no. October 2020, pp. 211–224, 2021, doi: https://doi.org/10.1016/j.solener.2020.11.012.

N. Siegel, M. Gross, C. Ho, T. Phan, and J. Yuan, “Physical properties of solid particle thermal energy storage media for concentrating solar power applications,” Energy Procedia, vol. 49, pp. 1015–1023, 2014, doi: https://doi.org/10.1016/j.egypro.2014.03.109.

N. P. Siegel, M. D. Gross, and R. Coury, “The development of direct absorption and storage media for falling particle solar central receivers,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 137, no. 4, pp. 1–7, 2015, doi: https://doi.org/10.1115/1.4030069.

K. J. Albrecht and C. K. Ho, “Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger,” Solar Energy, vol. 178, no. December 2018, pp. 331–340, 2019, doi: https://doi.org/10.1016/j.solener.2018.11.065.

K. J. Albrecht and C. K. Ho, “Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger,” Solar Energy, vol. 178, no. November 2018, pp. 331–340, 2019, doi: https://doi.org/10.1016/j.solener.2018.11.065.

G. Volker, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng. Vol. 16, no. 2, pp. 359-368, 1976.

K. J. Albrecht and C. K. Ho, “Heat Transfer Models of Moving Packed-Bed Particle-to-sCO2 Heat Exchangers,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 141, no. 3, pp. 1–8, 2019, doi: https://doi.org/10.1115/1.4041546.

M. Fernández-Torrijos, K. J. Albrecht, and C. K. Ho, “Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control,” Applied Energy, vol. 226, no. May, pp. 595–606, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.06.016.

P. Nikolai, B. Rabiyat, A. Aslan, and A. Ilmutdin, Supercritical CO 2 : Properties and Technological Applications - A Review, vol. 28, no. 3. 2019. doi: https://doi.org/10.1007/s11630-019-1118-4.

Downloads

Published

2024-02-12

How to Cite

Plewe, K., Chen, D., Sment, J. N., & Ho, C. (2024). Seasonal Performance Characterization of a Gen3 Particle-Based Concentrating Solar Plant With a Spatially Resolved Transient Thermal Storage Model. SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.673

Conference Proceedings Volume

Section

Advanced Materials, Manufacturing, and Components

Funding data