The FLAP Heliostat

A Novel Low-Cost Heliostat Design Featuring a Mirror Protection Mechanism Based on Dual-Use of the Elevation Drive

Authors

DOI:

https://doi.org/10.52825/solarpaces.v1i.627

Keywords:

Heliostat, Foldable Reflector, Desert Environment, Mirror Degradation, Anti-Soiling, Concentrating Solar Power, Central Receiver, Power Tower

Abstract

Heliostats represent a major cost share of concentrating solar power (CSP) plants with central receiver. They are essential for system efficiency and strongly influence maintenance cost and service life. Since CSP facilities require direct solar radiation, suitable installation sites can eminently be found in desert regions. However, dusty conditions may greatly reduce the performance of the plant due to soiling of the heliostat’s reflective surface and / or irreversible degradation caused by abrasive sand particles. A novel heliostat called FLAP, developed specifically for desert environments, is presented in this paper. It was designed with an emphasis on maximum manufacturing and maintenance cost reduction, yet improved service life in mind. The essential innovation of the FLAP heliostat is the patented foldable reflector support structure consisting of two panel sections that are oriented face-to-face when being in lay-down stow position. Folding of the panels is accomplished by means of a mechanism comprising a simple yet effective 4-bar linkage. To avoid costs for additional drives, the device is actuated by the one single central linear actuator that is also used for elevation tracking. Furthermore, wind loads are minimized due to the low profile of the heliostat structure in stow position, resulting in material and hence overall cost savings.

Downloads

Download data is not yet available.

References

F. Trieb, C. Schillings, M. O’Sullivan, T. Pregger und C. Hoyer-Klick, „Global Potential of Concentrating Solar Power,“ in SolarPaces Conference, Berlin, 2009.

S. Pfenninger, P. Gauché, J. Lilliestam, K. Damerau, F. Wagner und A. Patt, „Potential for concentrating solar power to provide baseload and dispatchable power,“ Nature Climate Change 4, p. 689–692, 2014. https://doi.org/10.1038/nclimate2276

G. J. Kolb, S. A. Jones, M. W. Donnelly, D. Gorman, R. Thomas, R. Davenport und R. Lumia, „Heliostat cost reduction study,“ U.S. Department of Energy, Office of Scientific and Technical Information, 2007. https://doi.org/10.2172/912923

A. Pfahl, J. Coventry, M. Röger, F. Wolfertstetter, J. F. Vásquez-Arango, F. Gross, M. Arjomandi, P. Schwarzbözl, M. Geiger und P. Liedke, „Progress in heliostat development,“ Solar Energy 152, pp. 3-37, 2017. https://doi.org/10.1016/j.solener.2017.03.029

C. Murphy, Y. Sun, W. Cole, G. Maclaurin, C. Turchi and M. Mehos, „The Potential Role of Concentrating Solar Power within the Context of DOE’s 2030 Solar Cost Targets,“ National Renewable Energy Laboratory, Golden, CO, 2019. https://www.nrel.gov/docs/fy19osti/71912.pdf

G. Picotti, etal. „Optimization of cleaning strategies for heliostat fields in solar tower plants,“ Solar Energy, Nr. 204, pp. 501-514, 2020. https://doi.org/10.1016/j.solener.2020.04.032

M. Hardt et al., „HECTOR – HELIOSTAT CLEANING TEAM-ORIENTED ROBOT,“ SolarPaces 2011, 2011.

S. Bouaddi et al. „A Review of Conventional and Innovative- Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants,“ Sustainability 10(11), 3937, 2018. https://doi.org/10.3390/su10113937

Peterka, J A; Derickson, R G, „Wind load design methods for ground-based heliostats and parabolic dish collectors,“ U.S. Department of Energy, Office of Scientific and Technical Information, 1992. https://www.osti.gov/biblio/7105290

R. Preßmair and A. Buchroithner and, „FOLDABLE AND TILTABLE DEVICE FOR THE CONVERSION OR DEFLECTION OF SOLAR RADIATION“. Europe Patent EP3916319A1, 2021. https://worldwide.espacenet.com/patent/search/family/070857062/publication/EP3916319A1?q=EP3916319A4

A. Pfahl, P. Liedke, C. Prahl, F. Vasquez und F. Gross, „Ansätze zur umfassenden Reduktion der Heliostatfeld-Kosten,“ in 18th Cologne Solar Colloquium, Cologne, 2015. https://www.dlr.de/sf/PortalData/73/Resources/dokumente/soko/soko2015/poster/Pfahl_-_Reduzierung_Heliostatfeldkosten_-_DLR_2015.pdf

A. Pfahl, P. Liedke, F. Vasquez und F. Gross, „Heliostaten der nächsten Generation,“ in 19th Cologne Solar Colloquium, Cologne, 2016. https://www.dlr.de/ sf/PortalData/73/Resources/dokumente/soko/soko2016/poster/DLR-Sonnenkolloquium2016_Poster_Pfahl_(DLR)_Heliostate_d_n_chst_Generatn.pdf

A. Buchroithner, G. B. Ganapathi, S. Nataraj and A. Kindler, „Designing an autonomous power system for a stand-alone heliostat,“ 2016 IEEE Green Energy and Systems Conference (IGSEC), pp. 1-6, 2016. https://doi.org/10.1109/IGESC.2016.7790060

Mohammad Reza Maghami et al. „Power loss due to soiling on solar panel: A review,“ Renewable and Sustainable Energy Reviews, Nr. 59, pp. 1307-1316, 2016. https://doi.org/10.1016/j.rser.2016.01.044

A.K. Sisodia and R.K. Mathur, „Impact of bird dropping deposition on solar photovoltaic module performance: a systematic study in Western Rajasthan,“ Environmental Science and Pollution Research, Nr. 26, 2019. https://doi.org/10.1007/s11356-019-06100-2

G. Ganapathi et al. „Development and Prototype Testing of a Low-Cost Lightweight Thin Film Solar Concentrator,“ Proceedings of the ASME 2016 Power and Energy Conference, Charlotte, North Carolina, 2016. https://doi.org/10.1109/IGESC.2016.7790060

F. Vásquez-Arango, J., Buck, R., and Pitz-Paal, R, „Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis,“ ASME. J. Sol. Energy Eng, Bd. 5, Nr. 135, October 2015. https://doi.org/10.1115/1.4030846

A. Pfahl, M. Buselmeier und M. Zaschke, „Wind loads on heliostats and photovoltaic trackers of various,“ Solar Energy, Nr. Issue 9, pp. 2185-2201, 2011. https://doi.org/10.1016/j.solener.2011.06.006

A. Buchroithner etal., „Estimating costs of heliostat production at high volumes based on a small-scale prototype,“ 2016 IEEE Green Energy and Systems Conference (IGSEC), pp. 1-8, 2016. https://doi.org/10.1109/IGESC.2016.7790061

A. Buchroithner, R. Felsberger and R. Preßmair, „Highly Efficient Solar Co-Generation in Parabolic Trough Collectors Using Hybrid Absorber Technologies: Potentials and Challenges,“ PVcon 2022, 07 08 2022. https://doi.org/10.13140/RG.2.2.27623.93608

igus® Inc, „Solutions for the Solar industry - UV-resistant, self-lubricating & maintenance-free,“ 2017. [Online]. Available: https://toolbox.igus.com/industry-solution-brochures/solar-industry-solutions [Accessed 23rd of August 2022].

igus® Inc, „UV-resistant polymer bearings for the solar and thermal power industry,“ [Online]. Available: https://www.igus.com/info/industries-solar-technology [Accessed 23rd of August 2022].

K. Parthiv, S. Akar, S. Glynn, C.Augustine, and P. Davenport, „Cost Update: Commercial and Advanced Heliostat Collectors,“ Renewable Energy Laboratory, 2022. https://www.nrel.gov/docs/fy22osti/80482.pdf

D. Feldman, K. Wu and R. Margolis „H1 2021 Solar Industry Update,“ 2021. [Online]. Available: https://www.nrel.gov/docs/fy21osti/80427.pdf [Accessed 22nd of March 2022].

Carlos D. Rodríguez-Gallegos, et al., „Global Techno-Economic Performance of Bifacial and Tracking Photovoltaic Systems,“ Joule, Bd. 4, Nr. 7, pp. 1514-1541, 2020. https://doi.org/10.1016/j.joule.2020.05.005

Downloads

Published

2023-12-14

How to Cite

Preßmair, R., & Buchroithner, A. (2023). The FLAP Heliostat: A Novel Low-Cost Heliostat Design Featuring a Mirror Protection Mechanism Based on Dual-Use of the Elevation Drive. SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.627

Conference Proceedings Volume

Section

Receivers and Heat Transfer Media and Transport: Point Focus Systems