Toward Autonomous Field Inspection of CSP Collectors With a Polarimetric Imaging Drone

Authors

DOI:

https://doi.org/10.52825/solarpaces.v1i.623

Keywords:

Polarimetric Imaging Drone, Heliostat Inspection

Abstract

We developed a polarimetric imaging drone to perform field inspections of heliostats and carried out field tests at Sandia’s National Solar Thermal Test Facility (NSTTF). The preliminary results show that Degree of Linear Polarization (DOLP) and Angle of Polarization (AOP) images greatly enhanced the edge detection results compared with the conventional visible images, supporting fast and accurate detection of heliostat mirror edges and cracks. The system holds the promise to enable future automated detection of heliostats optical errors and mirror defects.

Downloads

Download data is not yet available.

References

J. Yellowhair, P. Apostolopoulos, D. Small, D. Novick, and M. Mann, “Development of an aerial imaging system for heliostat canting assessments.” AIP Conference Proceedings 2445, 120024 (2022); https://doi.org/10.1063/5.0087057

Ulmer, Steffen & Maerz, Tobias & Prahl, Christoph & Reinalter, Wolfgang & Belhomme, Boris. (2011). Automated high resolution measurement of heliostat slope errors. Solar Energy. 85. 10.1016/j.solener.2010.01.010.

A. Sánchez-González, B. Grange, and C. Caliot, “Computation of canting errors in heliostats by flux map fitting: experimental assessment,” Opt. Express 28, 39868-39889 (2020)

E. Guillot, R. Rodriguez, N. Boullet, and J. Sans , “ARGOS: Solar furnaces flat heliostats tracking error estimation with a direct camera-based vision system”, AIP Conference Proceedings 2033, 200001 (2018) https://doi.org/10.1063/1.5067202

C. Q. Little, D. E. Small, and J. Yellowhair, “LIDAR for heliostat optical error assessment”, AIP Conference Proceedings 2445, 120017 (2022) https://doi.org/10.1063/5.0087691

T. Farrell, K. Guye, R. Mitchell, and G. Zhu. “A non-intrusive optical approach to characterize heliostats in utility-scale power tower plants: Flight path generation/optimization of unmanned aerial systems.” United States: N. p., 2021. Web. doi:10.1016/j.solener.2021.07.070.

R. Brost, P. Apostolopoulos, D. Small, D. Novick, N. Jackson, M. Mann, and E. Tsiropoulou. “High-Speed In-Situ Optical Scanning of Heliostat Fields.” Presented in SolarPACES 2021.

H. Zhao, W. Xu, Y. Zhang, X. Li, H. Zhang, J. Xuan, and B. Jia, “Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight,” Opt. Express 26, 28589-28603 (2018).

A. Sánchez-González, J. Yellowhair, “Reflections between heliostats: Model to detect alignment errors”, Solar Energy, Volume 201, 2020, Pages 373-386, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2020.03.005.

P. Dollár and C. Zitnick, “Edge Boxes: Locating Object Proposals from Edges.” In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_26

K. E. Torrance and E. M. Sparrow, “Theory for Off-Specular Reflection From Roughened Surfaces*,” J. Opt. Soc. Am. 57, 1105-1114 (1967)

M. Z. E. Rafique (2022). “Nanophotonics for Ultrafast Optical Modulation, Ocean, and Energy Applications”. Arizona State University.

M. Z. E. Rafique et al., “Field Deployable Mirror Soiling Detection Based on Polarimetric Imaging,” SolarPACES, 2022.

Downloads

Published

2023-12-20

How to Cite

Tian, M., Desai, N., Bai, J., Brost, R., Small, D., Novick, D., … Yao, Y. (2023). Toward Autonomous Field Inspection of CSP Collectors With a Polarimetric Imaging Drone. SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.623

Conference Proceedings Volume

Section

Measurement Systems, Devices, and Procedures

Funding data