Dynamic Corrosion of Carbonate Salt for 3rd Generation CSP Plants
DOI:
https://doi.org/10.52825/solarpaces.v1i.614Keywords:
Corrosion Under Dynamic Conditions, Third Generation Concentrated Solar Power, Thermal Energy Storage (TES), Molten Salts, High-Temperature, Eutectic Ternary Carbonate Salt: Li2CO3-Na2CO3-K2CO3Abstract
Eutectic ternary carbonate salt is one of the candidates for 3rd generation concentrated solar power (CSP) plants. Gen3 CSP targets higher operation temperatures, which strengthens the corrosivity issues associated to molten salts. Although there are corrosion studies for this carbonate salt in static conditions, the effect of salt flow is not fully understood. In this work, corrosion experiments under static and dynamic conditions are compared for SS310 subjected to ternary carbonate salt at 600ºC.
The corrosion layer formed during static and dynamic tests were completely characterized by means of SEM-EDX and XRD (surface and cross-section). The corrosion products deposited in the salt during the experiment were analyzed by ICP-OES.
The tests performed under dynamic conditions demonstrated an increase spallation of the corrosion layer. This spallation produced a thinner scale and exposed the Cr containing phase to the molten salt, fostering its dissolution. These results confirmed the significant effect of dynamic conditions on the corrosivity of eutectic ternary carbonate salt and the importance of assessing them in the design of 3rd generation CSP plants.
Downloads
References
Angel G. Fernández, Judith Gomez-Vidal, Eduard Oró, Alan Kruizenga, Aran Solé, Luisa F. Cabeza, “Mainstreaming commercial CSP systems: A technology review,” Renew. Energy, 140, 152-176, 2019, https://doi.org/10.1016/j.renene.2019.03.049
J. Lilliestam, T. Barradi, N. Caldés, M. Gomez, S. Hanger, J. Kern, N. Komendantova, M. Mehos, W.M. Hong, Z. Wang, A. Patt, “Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity,” Energy Pol., 116, 193–197, 2018, https://doi.org/10.1016/j.enpol.2018.02.014
M. Mehos, C. Turchi, J. Vidal, M. Wagner, Z. Ma, C. Ho, W. Kolb, C. Andraka, A. Kruizenga, “Concentrating solar power Gen3 demonstration roadmap,” in: National Renewable Energy Lab. (NREL), Golden, CO (United States), 2017.
W. Ding, A. Bonk, T. Bauer, “Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review,” Front. Chem. Sci. Eng., 12, 564–576, 2018, https://doi.org/10.1007/s11705-018-1720-0
J.C. Vidal, N. Klammer, “Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP,” AIP Conf. Proc., 2126, 080006, 2019, https://doi.org/10.1063/1.5117601
W. Ding, J. Gomez-Vidal, A. Bonk, T. Bauer, “Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level,” Sol. Energy Mater. Sol. Cells, 199, 8–15, 2019, https://doi.org/10.1016/j.solmat.2019.04.021
R. Raud, R. Jacob, F. Bruno, G. Will, T.A. Steinberg, “A critical review of eutectic salt property prediction for latent heat energy storage systems,” Renew. Sustain. Energy Rev., 70, 936–944, 2017, https://doi.org/10.1016/j.rser.2016.11.274
A.G. Fernández, F. Pineda, M. Walczak, L.F. Cabeza, “Corrosion evaluation of alumi-na-forming alloys in carbonate molten salt for CSP plants,” Renew. Energy, 140, 227–233, 2019, https://doi.org/10.1016/j.renene.2019.03.087
M. Sarvghad, O. Muransky, T.A. Steinberg, J. Hester, M.R. Hill, G. Will, “On the ef-fect of cold-rolling on the corrosion of SS316L alloy in a molten carbonate salt,” Sol. Energy Mater. Sol. Cell, 202, 110136, 2019, https://doi.org/10.1016/j.solmat.2019.110136
S.P. Sah, “Corrosion of 304 stainless steel in carbonates melt– a state of enhanced dissolution of corrosion products,” Corrosion Science, 169, 108535, 2020, https://doi.org/10.1016/j.corsci.2020.108535
Y. Grosu, A. Anagnostopoulos, B. Balakin, J. Krupanek, M.E. Navarro, L. González-Fernández, Y. Ding, A. Faik, “Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: Thermophysical properties, stability, compatibil-ity and life cycle analysis,” Sol. Energy Mater. Sol. Cells, 220 110838, 2021, https://doi.org/10.1016/j.solmat.2020.110838.
Y. Grosu, A. Anagnostopoulos, M.E. Navarro, Y.Ding, A. Faik, “Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materi-als for concentrated solar power,” Sol. Energy Mater. Sol. Cells, 215, 110650, 2020, https://doi.org/10.1016/j.solmat.2020.110650
J. Luo, C.K. Deng, N.H. Tariq, N. Li, R.F. Han, H.H. Liu, J.Q. Wang, X.Y. Cui, T.Y. Xiong, “Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants,” Sol. Energy Mater. Sol. Cells, 217, 110679, 2020, https://doi.org/10.1016/j.solmat.2020.110679
P. Audigié, V. Encinas-Sánchez, S. Rodríguez, F.J. Pérez, A. Agüero, “High tempera-ture corrosion beneath carbonate melts of aluminide coatings for CSP application,” Sol. Energy Mater. Sol. Cells, 210, 110514, 2020, https://doi.org/10.1016/j.solmat.2020.110514
L. González-Fernández, M. Intxaurtieta-Carcedo, O. Bondarchuk, Y. Grosu, “Effect of dynamic conditions on high-temperature corrosion of ternary carbonate salt for thermal energy storage applications”, Sol. Energy Mater. Sol. Cells, 240, 111666, 2022, https://doi.org/10.1016/j.solmat.2022.111666
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2023 Luis González-Fernández, Mikel Intxaurtieta Carcedo, Oleksandr Bondarchuk, Yaroslav Grosu
This work is licensed under a Creative Commons Attribution 4.0 International License.