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Abstract. A stochastic reflectance loss model is applied to extended datasets of experimental 
data collected at three sites in Australia, each representative of a different environment: urban, 
rural, and remote outback. The three sites are analysed in terms of TSP (Total Suspended 
Particles) or PM10 (Particulate Matter below 10µm in diameter), depending on the available 
dust sampler deployed at each location. Assessment of seasonal and daily patterns are also 
performed for further understanding of local phenomena likely to affect soiling in the area. 
Airborne dust concentration data are exploited to provide density distributions of expected daily 
reflectance losses. These mean losses for the three sites are 0.31 pp/day, 0.72 pp/day, and 
0.77pp/day for the outback, rural, and urban location, respectively. These values and their 
distributions are paramount for evaluation of a prospective plant profitability, planning for 
operating plants cleaning scheduling, and assessment of a prospective CSP location at site 
selection phase. The developed methodology is capable of providing highly valuable 
information based on easily measurable airborne dust concentration data only, hence 
becoming a critical step for de-risking CSP plants financing and deployment.  
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1. Introduction

The soiling of solar collectors and the induced loss of efficiency is a paramount issue in CSP. 
The reduction of heliostats reflection directly diminishes the thermal input available for power 
generation [1] and varies dramatically depending on site location and weather characteristics, 
which is further affected by seasonality [2]. Currently, artificial cleaning is the most widespread 
technique employed to mitigate the detrimental effects of heliostats soiling [2], [3]. However, 
cleaning is expensive and in most cases requires significant amount of water that may be 
scarce in CSP-favorable locations. The impact of the combined cost for cleaning and electricity 
generation losses due to soiling on a CSP plant profit could be as high as 20% in dusty 
areas [4]. Furthermore, the inherently inhomogeneous nature of soiling in a solar field implies 
potentially unbalanced thermal fluxes on central receiver systems, thus affecting their lifetime 
and required maintenance activities [5]. Predictive models and techniques have been 
developed to assess and predict soiling losses using a variety of methods, including physical-
based models [6], regressions analyses [7], Artificial Neural Networks [8], [9], or on-site 
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measurements with hand-held reflectometers [10] and semi-automated devices [11], [12]. 
Statistical tools can be integrated with developed soiling models to obtain reliable assessments 
of the inherent uncertainty of the reflectance losses predictions. In this study, a stochastic 
approach developed and validated in a previous publication [13] is exploited to evaluate the 
impact of different uncertainty sources, to predict soiling losses on heliostats deployed in three 
different locations in Australia, and to assess the interval of confidence for long-term 
predictions. The soiling model is tuned for each site based on experimentally collected data 
over a few weekly experimental campaigns, and subsequently applied to predict long term 
soiling losses. 

2. Stochastic Models 

The analysis performed in this study is based on the constant-mean model described in a 
previous publication by some of the authors [13]. The key components and assumptions of the 
exploited model will be briefly described in this section to facilitate the understanding of the 
proposed methodology and guide the reader through the innovative application of the 
aforementioned modelling technique. The constant-mean model is the simpler version of the 
models proposed in [13], which is bereft of any dependency on environmental factors 
described in [6] except for the airborne dust concentration. The simplified model detailed in 
Section 2.1 was selected since it provides better predictions on novel data and has a simple 
structure amenable to prediction. Eventually, to estimate the statistical distribution of daily 
soiling losses, a Monte Carlo simulation is conducted, which is detailed in Section 2.2. 

2.1 Reflectance Loss Model 

The reflectance loss model provides estimates of the statistical distribution of daily soiling 
losses based on long-term experimental airborne dust data and short-term reflectance data 
measurements obtained on site. Its description is detailed below, summarizing from [13] and 
highlighting those aspects that are most relevant for the remainder of this paper. 

The reflectance measurement 𝑟𝑟𝑘𝑘 taken at time index k is modelled as 

 𝑟𝑟𝑘𝑘 = ρ�𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑘𝑘 ,ϕ𝑘𝑘�+ ϵ𝑟𝑟,𝑘𝑘 (1) 

Where ϵ𝑟𝑟,𝑘𝑘~𝒩𝒩�0,σ𝑟𝑟,𝑘𝑘
2 � varies with time, 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑘𝑘 is the projection area of the surface coverage 

due to soiling, and ϕ𝑘𝑘 is the angle of incident of the measuring device. The measurement noise 
variance σ𝑟𝑟,𝑘𝑘

2  is obtained computing the estimated variance of the mean of repeated 
measurements on the same reflective sample. The statistical distribution of the measured 
reflectance change between two consecutive time steps k and l is modelled as a normal 
distribution: 

 𝑟𝑟𝑠𝑠 − 𝑟𝑟𝑘𝑘 ∼ 𝑁𝑁�μ𝑠𝑠,𝑘𝑘 ,σ𝑠𝑠,𝑘𝑘2 � (2) 

Where 

 μl,𝑘𝑘 = −μ�b(ϕ𝑘𝑘)�α𝑗𝑗 cos�θ𝑗𝑗�
l−1

𝑗𝑗=𝑘𝑘

 (3) 

 
σl,𝑘𝑘2 = σ𝑑𝑑𝑑𝑑𝑑𝑑2 b(ϕ)2�α𝑗𝑗2 cos2�θ𝑗𝑗�

l−1

𝑗𝑗=𝑘𝑘

+ σ𝑟𝑟,𝑘𝑘
2 + σ𝑟𝑟,l

2  
(4) 
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Here, b(ϕ) is a function describing the effect of the incidence angle on the measurement, μ� is 
a parameter describing the mean loss in one timestep, α is the ratio of measured airborne dust 
to that of some specified airborne dust distribution (usually from atmospheric literature based 
on the site characteristics [14]), and θ is the tilt angle of the mirror. Eventually, σ𝑑𝑑𝑑𝑑𝑑𝑑2  and σ𝑟𝑟,𝑥𝑥

2  
are parameters describing the uncertainty in the losses predictions and reflectance 
measurements, respectively. Since the time indices used above are arbitrary, this model can 
be used to estimate the statistical distribution of losses over any time interval, which is chosen 
as 1 day in this work. 

For a more thorough and complete description of the reflectance loss model applied in this 
study, the interested reader is referred to a previous publications [13]. 

2.2 Monte Carlo Simulations 

To estimate the statistical distribution of daily soiling losses, a Monte Carlo simulation is 
conducted by  

1) Sampling the uncertain estimated model parameters; 
2) Sampling the daily dust loadings from the long-term site airborne dust measurements; 
3) Sampling the model’s inherent uncertainty described by the normal distribution above 

(and the parameters sampled from 1) and 2)).  

3. Experimental Sites Characterization 

The three datasets are analysed to characterize each Australian experimental site in terms of 
airborne dust loading. The first dataset was collected in Brisbane and it is hence characteristic 
of an urban environment, the second site is located in Mount Isa, QLD, in a remote and desertic 
area isolated from anthropogenic sources, and the third one is located in the industrial area of 
the rural town of Wodonga, VIC. Furthermore, the properties of airborne dust in terms of 
seasonal and daily variation, as well as dust size distribution where possible, have been 
analysed in this study, based on large available datasets. 

The measured airborne dust concentration for each of the three sites is represented in 
Figure 1, together with their mean value throughout the whole experimental period. The 
measurements for the QUT and Mount Isa sites are expressed in terms of TSP while those for 
Wodonga site are shown for PM10. This is due to the different dust sampler employed at each 
location. The sampler in Wodonga is also able to measure the cumulative airborne particle 
mass at five particle diameters (1, 2.5, 4, 10, 20 μm), providing further information that can be 
exploited for particle size distribution assessment. 

a) 
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b) 

 

c) 

 
Figure 1. Airborne dust concentration for the three sites: a) Brisbane, b) Mount Isa, 

c) Wodonga 

The data are also exploited to assess any observable seasonal or daily behaviour, that could 
further improve long-term soiling evaluations. Figure 2 provides a complete analysis of the 
TSP concentration measured at the QUT site. The monthly average over the last 5 years (2020 
is missing due to malfunction of the device) suggests a moderate decrease of overall airborne 
dust mass concentration. However, the seasonal analysis represented in terms of difference 
from the overall mean, does not seem to suggest any significant variation throughout the year. 
The daily variation shows instead a higher peak in the early morning and a second lower peak 
in the evening, which could be explained by increased traffic in the neighbouring highway. The 
data shown for the Mount Isa site in Figure 3 (left) provides information regarding a moderate 
seasonality with higher dust loading in autumn (September to November in the Southern 
Hemisphere) and lower dust levels from summer to spring. This is partly explained by the more 
frequent rain occurrences during summer and spring, which have a scavenging effect on 
airborne particles. Figure 3 (right) shows instead the daily behaviour of airborne dust loading, 
which appears to have a maximum around 10am and decrease during the night. It may be 
explained by increased wind during the day that carries higher concentration of dust particles. 
Figure 4 (left) shows the monthly average PMx for the site of Wodonga. Although there is 
limited data to infer anything conclusive regarding airborne dust concentration seasonality, the 
measurements collected so far suggest high particle concentrations in February, both for 2022 
and 2023. Changes in airborne particle size distribution over the year can be assessed by 
analysing the difference between two PMx measurements. For instance, the difference 
between PM1 and PM2.5 provides the airborne mass concentration for particle diameters 
between 1 μ𝑚𝑚 and 2.5 μ𝑚𝑚. Figure 4 (right) shows the intra-day synchronous average for each 
PMx range. These figures show that particle sizes between 4 and 10 µm are the most 
significant contributor to airborne mass concentrations. The mass concentration for each 
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particle range shows evidence of anthropogenic pollution during the morning and afternoon, 
likely due to the nearby highway or manufacturing disturbances, with particle sizes between 
2.5μ𝑚𝑚 and 10μ𝑚𝑚  showing the largest peaks near these times. Particles beyond these 
boundaries tend to not be affected at these peak time periods, suggesting that the particle size 
distribution may change throughout the day. 

 
 

Figure 2. QUT TSP analysis 

  
Figure 3. Mount Isa TSP analysis 

  
Figure 4. Wodonga – Monthly Average PMx (left) ; Intra-day synchronously averaged PMx ratio 

(right). Missing data are due to maintenance of the device from June to August 2022 
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4. Results 

The stochastic soiling model discussed in Sections 2.1 and 2.2 is applied in this study on the 
available datasets of airborne dust concentration (either expressed in terms of TSP or PM10, 
depending on the deployed dust sampler) to assess the expected daily losses for each site. In 
Figure 5, the statistical distribution of expected reflectance losses for a horizontal mirror is 
shown for the three sites. The estimated reflectance daily losses for the site in Brisbane have 
a mean of 0.77 pp/day, a median of 0.56 pp/day, and a strong positive skewness. The 
significant width of the distribution suggests that most reflectance daily losses happen in the 
interval 0.26 pp/day to 1.00 pp/day. The expected “worst case scenario” at the 97.5th percentile 
corresponds to a loss of 2.88 pp/day. The estimated reflectance daily losses for the site in 
Mount Isa have a mean of 0.31 pp/day, a median of 0.22 pp/day, and an only slight positive 
skewness. The width of the distribution is limited suggesting that most reflectance daily losses 
happen between 0.09 pp/day and 0.41 pp/day. The expected “worst case scenario” at the 
97.5th percentile corresponds to a loss of 1.28 pp/day. The estimated reflectance daily losses 
for the site in Wodonga have a mean of 0.72 pp/day, a median of 0.58 pp/day, and a significant 
positive skewness. The width of the distribution suggests that most reflectance daily losses 
happen in the interval 0.37 pp/day to 0.87 pp/day. The width of the distribution suggests that 
most reflectance daily losses happen in the interval between 0.37 pp/day and 0.87 pp/day. The 
expected “worst case scenario” at the 97.5th percentile corresponds to a loss of 1.99 pp/day. It 
is noteworthy to observe the higher expected reflectance losses for the urban environment at 
0.77 pp/day (a) and the rural environment at 0.72 pp/day (c) with respect to the very low losses 
in the outback location at 0.31 pp/day (b).  

a) 

 

b) 
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c) 

 
Figure 5. Probability density functions of soiling losses for the three sites: a) Brisbane, 

b) Mount Isa, c) Wodonga 

5. Conclusions 

Probability distributions of daily reflectance losses have been estimated for three Australian 
sites based on extended datasets of measured airborne dust concentration. The results show 
that the knowledge of dust concentration at prospective CSP plant locations for an extended 
amount of time (at least one year) could provide reliable assessment of expected reflectance 
losses for heliostats deployed on site. The analysis presented in this study represents a first-
of-its-kind for CSP soiling-induced reflectance losses. The information provided by the 
histograms in Figure 5 are of paramount importance for CSP owners and operators, since it 
enables proper planning of mitigation activities with respect to heliostats soiling. Furthermore, 
when an exploratory experimental campaign is conducted on a potential CSP site, the shown 
graphs become a powerful tool for assessing expected losses, project de-risking and as a 
performance index for site selection. 
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