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Abstract. The present work summarizes the work done within the scope of CATION, CHLOE, 
and HECTOR projects related to the aiming point strategies optimization algorithms applied to 
volumetric solar receivers. Several optimization methods have been applied in the literature 
for optimizing the aiming strategy of solar power tower plants. However, the use of these 
algorithms for the requirements of volumetric solar receivers and solar fuel applications has 
not been accomplished. Herein, the problem is formulated as a constrained optimization 
problem whose objective function is a combination of the total power on the receiver surface 
and the flux homogeneity. A comparison of the results is presented in this work. It will be seen 
that TABU search and SA algorithms are the most efficient in terms of computation time and, 
in addition, the first one shows very good results in power and spillage. The rest of the 
mentioned algorithms are much slower and, in general, the results are slightly worse.  

Keywords: Solar Tower Pants, Aiming Point Strategy, Optimization, Heuristic, Metaheuristic, 
Local Search  

1. Introduction 

Nowadays, solar tower plants have been proposed as systems to put solar fuels in the energy 
production industry. One of the main challenges that solar fuels currently face is the operation 
conditions of the solar receivers when they are used as high-temperature thermochemical 
reactors that involve very high average solar flux densities typically above 1.500 kW/m2. In 
order to concentrate solar power in an optimum way, precise and accurate control of the solar 
field is required at any time.  

The control of the solar flux distribution on the receiver in a solar tower plant is closely 
related to the heliostats’ aiming points’ definition. Aiming strategies provide information about 
where and when each heliostat aims during the operation time and the main objective of 
defining an optimal aiming strategy is to maximize the efficiency of the solar tower plant, and 
besides, to guarantee better reliability and durability of the receiver over time avoiding 
accelerated aging and deterioration. Another important aspect to consider in the strategy is 
spillage, which is the proportion of power that exceeds the limits of the receiver surface and is 
therefore wasted. Thus, the lowest possible spillage is desired.  
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Determining a dynamic pointing strategy to maintain high-level fluxes over a long period 
is a complex problem. As a first step, the validation of the methodology for selecting the optimal 
focus point for each heliostat among those predetermined is addressed. In the future, with this 
part solved, the definition of the best coordinates for aiming points will be carried out. In this 
work, several algorithms have been studied from the literature and those with the greatest 
potential have been developed in order to compare and determine the benefits and drawbacks 
of each of them focusing on volumetric solar receivers. Moreover, with the methodology used, 
the study could be extended to compare other scenarios or include new algorithms.  

The structure of the subsequent sections is as follows. Section 2 describes the algorithms 
considered in the comparison. Section 3 describes the methodology carried out; section 4 
describes the power plant used for the simulation and presents the results obtained in the 
optimization process. Finally, section 5 summarizes the results and the conclusion obtained in 
the results section. 

2. Optimization algorithms 

Related to the literature, plenty of methods and algorithms have been already developed to 
solve combinatory optimization problems where finding the best solution analytically requires 
a lot of computational cost. These algorithms pretend to reduce the space of possible solutions 
to perform the search more efficiently. These algorithms can be classified as heuristic, meta-
heuristic, or integer linear programming. 

Some publications have already addressed the aiming point optimization problem [1], but 
there is still a long way to go in order to establish a proven reference methodology. Along this 
work, some of the most promising algorithms have been developed and compared between 
them taking into account certain key performance characteristics: spillage, peak flux andpower. 
All of this parameters have been simulated by CHELIO [6], a CENER in-house code. In the 
following subsections, a brief description of the algorithms implemented is presented. 

2.1 Tabu Search 

TABU search (TS) [2] is a metaheuristic method that employs local search for mathematical 
optimization. Essentially, TS uses local search to move from a potential solution to an improved 
solution from its neighborhood until the stopping criterion has been satisfied (usually a 
maximum number of iterations or a score threshold previously fixed). In this case, a maximum 
number of iterations has been used as the stopping criterion. Besides, when defining the 
neighborhood of each potential solution, TS uses memory structures so that there are no 
unexplored areas of solutions.  

In this particular case, at each iteration, each heliostat aims at an arbitrary point. If the 
objective function improves, the heliostat stays with the new aiming point, if on the contrary, it 
does not improve, it aims at the previous aiming point. In the search process, a history of tested 
aiming points is stored to avoid repeated combinations. 

2.2 Genetic Algorithms 

Genetic Algorithms (GA) [3] are a type of evolutionary algorithm (EA), which are metaheuristic 
algorithms based on the Darwinian principle of survival of the fittest. GA creates high-quality 
solutions to optimization and search problems using three operators: selection, mutation, and 
crossover. First, an initial population is created and fitness, the value of the objective function, 
is calculated for each individual. In the present case, each individual is composed of heliostat-
aiming point pairs. After that, parents with the best fitness are selected from the population and 
a crossover operation is performed. For this operation, the aiming point of one heliostat in two 
individuals is exchanged thus creating a completely new individual. Finally, the mutation 
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operation is performed changing the aiming point of one heliostat of one individual randomly 
to maintain the diversity in the population and avoid premature convergence without searching 
for a global best solution.  

In addition, a new version of the genetic algorithm has been implemented. This algorithm 
introduces a new operation based on the Ant Colony Optimization (ACO) algorithm, the 
Modified Genetic Algorithm (MGA). This modification aimed to find improvements in the results 
and to reduce convergence times. However, this objective has not been achieved as the results 
show. 

2.3 Artificial Bee Colony 

Artificial Bee Colony (ABC) algorithm [4] is inspired by Bee Colony foraging behavior and 
explores solution space at random, at multiple points, converging to a better solution with every 
successive generation. This algorithm consists of four essential components. Food Sources 
represent feasible solutions for the optimization problem. Employed bees search around the 
food sources to fine-tune and evolve to produce more nectar. Onlooker bees watch the 
employed bees and explore the most promising food sources. This ensures that the more 
promising a food source is the more it gets explored. Finally, scout bees choose random new 
food sources to ensure that it does not fall into local minima. 

In this case, the initial random population of bees corresponds with the employed bees. 
Each employed bee corresponds to a solution of the aiming strategy and each heliostat - 
aiming point pair corresponds to a food source.  

2.4 Simulated Annealing 

Simulated annealing (SA) [5] is a metaheuristic algorithm based on the Metropolis Hastings 
method. At each step, the SA heuristic considers some neighboring state of the current state 
and probabilistically decides between moving the system to the new neighbor state or staying 
in the precious one. Typically, this step is repeated until the system reaches a state that is 
good enough for the corresponding application, or until a maximum given computation 
iterations. 

3. Methodology

The designing of an optimal aiming strategy leads to finding the best position of the aiming 
point for each heliostat in the heliostat field. The optimization of the strategy is a continuous 
nonlinear constrained optimization problem of very large dimensions. For this reason, a fixed 
scenario is defined (heliostats, tower, aiming points, time instant, dni) 

Every optimization algorithm process, including the aiming point strategy optimization, 
needs to define the objective function to either maximize or minimize, the receiver power 
constraints and the aiming point distribution. Herein, the strategy aims to maximize the total 
power at the receiver input aperture while maintaining a homogeneous flux distribution. Thus, 
in this comparison, the function to maximize has been considered as a combination of both 
concepts. More specifically, the considered objective function is shown in equation (1). 

fobj = α⋅pt-(1-α)⋅σf (1) 

where α∈[0,1] indicates the weight given to each term, pt denotes the total power, and σf the 
flux density standard deviation on the receiver. Indeed, if α=1 is considered, the expression in 
(1) maximizes the total power, whereas if α=0, it maximizes – σf, which is equivalent to
maximizing the homogeneity. A parametric study has been carried out to analyze the
relationship between power and flux dispersion as a function of alpha. As we increase the
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value of the parameter, the maximum power increases but the flux is stored at the center of 
the receiver, which makes the flux distribution very inhomogeneous. This is why α = 0.6 has 
been taken in this work. 

To calculate the flux map at the receiver during the aiming point strategy optimization 
process, the main software used is CHELIO [6], a CENER in-house code that is adequate 
software for this application since it is based on mathematical simplified models with 
computational cost and simulation time much lower than the ray-tracing software.  

4. Simulation case and results  

In this comparison work, a power tower plant with 739 heliostats has been considered. The 
positions of the heliostat are shown in Figure 1 a). A rectangular flat surface has been used to 
represent the volumetric solar receiver input aperture, and a cylindrical tower has been 
modeled. Figure 1 b) shows the flux map and contour lines when all the heliostats are focusing 
at the center of the receiver. In this case, the spillage is only 1.38%, but it is clear that the flux 
distribution is not homogeneous and that its concentration in a single point of 3.59MW/m2 that 
can cause irreparable damage to the materials of the receiver, which is one of the 
consequences to be avoided by optimizing the aiming strategy. The total power in this case is 
1.58MW. 

 
a) 

 
b) 

Figure 1. a) Simulated heliostat field distribution; b) Flux map when all heliostats aim to the center of 
the receiver. 

Several distributions for the aiming points have been tested. More specifically, uniform 
distributions of 9, 15, and 21 aiming points have been considered in this work (see Figure 2). 
Note that an odd number of aiming points must be defined on each axis of the receiver surface 
so that the center of the receiver is one of the aiming points. For each aiming point distribution, 
the optimization with the algorithms mentioned above and with different numbers of iterations 
have been run. 

 

Figure 2. The different aiming point distributions used in the simulation.  

The following figures and tables show the results of the aiming point optimizations. For the first 
simulations, 9 aiming points uniformly arranged in the aperture have been defined. Table 1 
shows the results of the simulations. 
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Table 1. The obtained flux deviation, total power, peak flux, and spillage for the different algorithms for 
9 predefined aiming points. 

Number of 
aiming 
points 

Method Iterations Deviation 
[kW/m2] 

Total 
Power 
[MW] 

Maximum 
flux peak 
[kW/m2] 

Spillage 
[%] 

9 TABU 300 197.40 1.48 682.76 7.03 
9 TABU 3000 213.12 1.52 748.20 4.93 
9 GA 100 217.10 1.48 763.86 7.15 
9 GA 1000 215.54 1.47 837.12 7.53 
9 MGA 100 201.39 1.47 747.66 7.65 
9 MGA 1000 230.56 1.47 954.90 7.42 
9 SA 300 199.91 1.48 664.85 7.40 
9 SA 3000 206.11 1.48 734.87 7.02 
9 ABC 100 200.29 1.48 696.55 7.31 
9 ABC 1000 206.64 1.48 722.56 7.20 

Figure 3 are resulting flux distribution maps for each simulation. In these maps, the aiming 
points are clearly visible. 

 

 

Figure 3. The flux maps distributions with 9 aiming point optimizations. 
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The previous results suggest that 9 aiming points are not enough for achieving a homogenous 
flux map. For this reason, Table 2 shows the results of the optimizations for 15 aiming points.  

Table 2. The obtained flux deviation, total power, peak flux, and spillage for the different algorithms for 
15 predefined aiming points. 

Number of 
aiming 
points 

Method Iterations Deviation 
[kW/m2[ 

Total 
Power 
[MW] 

Maximum 
flux peak 
[kW/m2] 

Spillage 
[%] 

15 TABU 300 90.63 1.32 485.25 15.63 
15 TABU 3000 133.43 1.44 608.80 9.14 
15 GA 100 73.56 1.28 462.94 17.91 
15 GA 1000 71.25 1.27 505.50 18.32 
15 MGA 100 65.62 1.28 451.33 18.15 
15 MGA 1000 71.86 1.26 584.63 19.14 
15 SA 300 83.62 1.31 525.73 16.27 
15 SA 3000 88.25 1.31 520.39 16.05 
15 ABC 100 78.74 1.30 478.32 16.86 
15 ABC 1000 83.85 1.31 488.75 16.44 

In this case, the deviation has been reduced. However, the spillage has increased reducing 
the incident power on the receiver. Figure 4 presents the flux map distribution for 15 aiming 
points. 

 

 

Figure 4. The flux maps distributions with 15 aiming point optimizations. 

6



Mellado et al. | SolarPACES Conf Proc 2 (2023) "SolarPACES 2023, 29th International Conference on 
Concentrating Solar Power, Thermal, and Chemical Energy Systems" 

Finally, optimizations with 21 uniformly distributed aiming points have been carried out. Table 
3 and Figure 5 show the corresponding results. 

Table 3. The obtained flux deviation, total power, peak flux, and spillage for the different algorithms for 
21 predefined aiming points. 

Number of 
aiming 
points 

Method Iterations Deviation 
[kW/m2[ 

Total 
Power 
[MW] 

Maximum 
flux peak 
[kW/m2] 

Spillage 
[%] 

21 TABU 300 91.60 1.32 518.33 15.75 
21 TABU 3000 143.16 1.45 621.27 8.69 
21 GA 100 76.91 1.28 498.56 17.83 
21 GA 1000 78.36 1.27 535.82 18.67 
21 MGA 100 81.92 1.27 495.73 18.34 
21 MGA 1000 77.71 1.25 536.64 19.72 
21 SA 300 77.99 1.30 452.57 17.07 
21 SA 3000 87.75 1.31 491.90 16.48 
21 ABC 100 79.21 1.29 487.22 17.22 
21 ABC 1000 85.81 1.30 485.53 17.01 

 

 

 

Figure 5. The flux maps distributions with 21 aiming point optimizations. 
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In general, with fewer aiming points, being further away from the edge of the receiver surface 
results in less spillage and, therefore, higher total power. However, in this case, the 
homogeneity drops, because there is more receiver surface that has not been covered. In the 
same way, when there are more aiming points, the flux deviation decreases, as there are more 
points spread over the surface of the receiver. This also causes the spillage to increase. 

Regarding the comparison between algorithms, genetic algorithms are the ones that 
obtain solutions with higher spillage, i,e., less total power. In terms of time, the GA and ABC 
algorithms have taken the longest to run, while TS and SA algorithms are the most 
computationally efficient. We also note that the TS with a high number of iterations (+2000) 
provides very good results in terms of power and spillage. In the case of 9 aiming points, the 
flux is mainly concentrated at the corners, even though most of the heliostats point to the 
center. This is because those aiming at the center of the receiver are the heliostats farthest 
from the tower (see Figure 6). 

 
a) 

 
b) 

Figure 6.The solution obtained with 9 aiming points, TS with 3000 iterations; a) Optimal aiming 
strategy; b) Heliostats aiming the center of the receiver.  

5. Conclusions and future work  

Five different optimization methods were applied in the aiming strategy optimization of a solar 
power tower with a volumetric receiver. All these algorithms were implemented with different 
parameter settings and the results have been compared. Although the results do not present 
big differences, TS performs well when a high number of iterations are used. GA takes more 
evaluations to reach a good performance. In general, the highest values of spillage and 
therefore, less power, are achieved with these algorithms. Finally, both ABC and SA provide 
good results, although the second one is more computationally efficient. 

The optimum solution is the one that maximizes total power and minimizes standard deviation. 
The value of spillage and maximum flux peak must be taken into account in order to guarantee 
the receiver integrity.  

Table 4. The obtained flux deviation, total power, peak flux, and spillage for the different algorithms for 
9, 15 and 21 predefined aiming points. 

Method Iterations Deviation 
[kW/m2]  

Total Power 
[MW] 

Maximum flux 
peak [kW/m2] 

Spillage [%] 

Number of Aiming 
Points 

9 15 21 9 15 21 9 15 21 9 15 21 

TABU 300 197.4 90.63 91.6 1.48 1.32 1.32 682.8 485.3 518.3 7.03 15.63 15.8 
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TABU 3000 213.1 133.4 143 1.52 1.44 1.45 748.2 608.8 621.3 4.93 9.14 8.69 
GA 100 217.1 73.56 76.9 1.48 1.28 1.28 763.9 462.9 498.6 7.15 17.91 17.8 
GA 1000 215.5 71.25 78.4 1.47 1.27 1.27 837.1 505.5 535.8 7.53 18.32 18.7 
MGA 100 201.4 65.62 81.9 1.47 1.28 1.27 747.7 451.3 495.7 7.65 18.15 18.3 
MGA 1000 230.6 71.86 77.7 1.47 1.26 1.25 954.9 584.6 536.6 7.42 19.14 19.7 
SA 300 199.9 83.62 78 1.48 1.31 1.3 664.9 525.7 452.6 7.4 16.27 17.1 
SA 3000 206.1 88.25 87.8 1.48 1.31 1.31 734.9 520.4 491.9 7.02 16.05 16.5 
ABC 100 200.3 78.74 79.2 1.48 1.3 1.29 696.6 478.3 487.2 7.31 16.86 17.2 
ABC 1000 206.6 83.85 85.8 1.48 1.31 1.3 722.6 488.8 485.5 7.2 16.44 17 

Table 4 shows a comparison between all the algorithms executed with the three aiming 
points distribution proposed along this work. For the distribution of 15 and 21 aiming points the 
spillage increases considerably in all cases except for TS algorithm with 3000 iterations. The 
configuration with 9 aiming points keep the spillage in an acceptable value for every algorithm. 
The best value of total power is for the 9 aiming points distribution and TS algorithm with 3000 
iterations but with a high value of standard deviation. 15 and 21 aiming points distribution 
decrease the total power but the value of standard deviation is lower with more flux 
homogeneity in the receiver. 

The methodology presented in this work is successful in the comparison optimization 
algorithms. As a next step, these results will be extended with other algorithms like Ant Colony 
Optimization or Linear Programming. 

In the near future, the approach of the generation of an automatic and dynamic strategy 
for the definition of aiming point distribution will be carried out. Finally, note that all this work 
has been done for a static state, that is, for a specific solar position, but different dynamic 
strategies will be studied once the static problem is completely covered. 
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