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Abstract. The Weibull distribution is commonly accepted as the most suitable model for de-
scribing the annual distribution of Direct Normal Irradiance (DNI). However, when the annual 
DNI is assumed to follow a Normal distribution instead of a Weibull distribution, there is a 
notable increase in the cumulative annual values for unfavourable and worst-case scenarios. 
In this research, we assess the suitability of different statistical indexes for goodness-of-fit by 
applying them to the annual cumulative DNI and Global Horizontal Irradiance (GHI) data rec-
orded at six locations with varying climates. Our observations reveal that, across all locations, 
the Representative Solar Year (RSY) aligns with the 50% Probability of Exceedance (PoE50) 
of a Normal distribution fitted to the observed data. We quantify that assuming the annual DNI 
conforms to a Weibull distribution, as opposed to a Normal distribution, results in a substantial 
decrease of approximately 7% in the annual cumulative value for the worst-case scenario. 
Based on our analysis, we find no compelling evidence to reject the hypothesis that the annual 
DNI follows a Normal distribution. 
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1. Introduction

Analyzing the yearly distribution of direct solar radiation can provide valuable insights into the 
patterns and trends of solar radiation at a specific location. The financing of solar power sys-
tems typically relies on a statistical assessment of the solar resource, which involves evaluat-
ing average, adverse, and worst-case scenarios [1], expressed as the Probability of Exceed-
ance at 50% (PoE50), 90% (PoE90), and 99% (PoE99) respectively. These scenarios, which 
complement percentile scenarios, are crucial for assessing the bankability of Concentrated 
Solar Power (CSP) projects. 

Understanding the variability in annual solar radiation is crucial for a wide range of ap-
plications, including solar energy generation, agriculture, and climate modeling. However, 
there is currently no consensus in the scientific community regarding the annual distribution of 
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Direct Normal Irradiance (DNI). While the Weibull distribution is generally accepted as the best 
fit for the annual DNI distribution, further examination is warranted. Fernandez-Peruchena et 
al. [2] conducted an extensive evaluation of the statistical properties of annual DNI and Global 
Horizontal Solar Irradiation (GHI) data from 13 locations. They employed a battery of four 
goodness-of-fit tests [3-6] to assess how well the DNI data conformed to a Weibull distribution 
and the GHI to a Normal distribution. The results of these statistical tests were reported in 
terms of p-values. Fernandez-Peruchena et al. did not reject any null hypotheses for any of 
the locations because all the obtained p-values exceeded 0.05, suggesting that annual DNI 
adheres to a Weibull distribution and the annual GHI adheres to a Normal distribution. Based 
on this finding, the Spanish standard UNE 206013:2017 [7] was developed, assuming that 
annual DNI follows a Weibull distribution. This standard proposes a method for calculating 
adverse and worst-case scenarios (PoE90-PoE99) where the annual DNI data is fitted to a 
Weibull distribution. The cumulative annual values for the bad and worst-case scenarios are 
subsequently computed based on this fit. 

In this study, we aim to quantify the impact of the assumption that annual DNI adheres 
to a Weibull distribution rather than a Normal distribution when calculating bad and worst-case 
scenarios following the Spanish standard UNE 206013:2017. Additionally, we revisit the con-
clusions drawn by Fernandez-Peruchena et al. by adopting a different approach to the use of 
goodness-of-fit tests. Instead of conducting normality tests for GHI and Weibull distribution 
tests for DNI, we evaluate both sets of tests for both GHI and DNI time series 

 2. Methodology 

2.1 The selected goodness of fit tests 

We have chosen three tests from the existing literature: 

• Shapiro-Wilk Test: This test assesses normality in a dataset. It is selected because of 
its robustness, even with relatively small series sizes. It is important to note that the 
observed series are relatively short (20-25 values), whereas the synthetic series are 
significantly longer (1000 values). The test does not guarantee exact normality but pro-
vides evidence of whether it is reasonable to assume normality for analytical purposes 
[8]. 

• Lilliefors Normal Test: This test is a variation of the Kolmogorov-Smirnov test, specifi-
cally designed to evaluate whether a dataset follows a normal distribution. It is particu-
larly well-suited for small sample sizes, typically fewer than 50 values [9]. 

• Anderson-Darling Test: The Anderson-Darling test is commonly employed to determine 
if a dataset adheres to a specific distribution, such as the Weibull distribution [10]. 

2.2 Observed and synthetically generated databases 

Goodness-of-fit tests can be influenced by the length of the databases used for analysis. In 
our study, we worked with observed data collected from six diverse locations, each character-
ized by different climates (Table 1) [11]. The data was sourced from Solargis climData profes-
sional, covering a time span of 20-25 consecutive years. It's important to note that all Solargis 
parameters are rigorously validated using high-precision meteorological equipment deployed 
globally for quality control. Table 1 provides essential geographical and climatological details 
for the chosen sites. 
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Table 1. Characterization of selected sites, period of years available and their Köppen-Geiger classifi-
cation climate. 

Location (ID) Country Latitude 
(ºN) 

Longitude 
(ºE) 

Years Köppen classifi-
cation climate 

Brasilia (BRB) Brazil -15.60 -47.71 1999-2020 Tropical Monsoon 
(Aw) 

Boulder (BOU) United 
States 

40.13 -105.24 1999-2020 Dry Semi-Arid 
Cold (Bsk) 

Tamanrasset 
(TAM) 

Algeria 22.79 5.53 1994-2020 Dry Arid Desert 
Hot (Bwh) 

Goodwin Creek 
(GCR) 

United 
States 

34.25 -89.87 1999-2020 Temperate No 
dry season hot 
summer (Cfa) 

Toravere (TOR) Estonia  58.26 26.46 1994-2020 Continental No 
dry season Warm 

Summer (Dfb) 
Seville (SEV) Spain 37.41 -6.01 2000-2022 Temperate Dry 

Hot Summer 
(Csa)  

Additionally, we generated synthetic data for our analysis. This involved fitting both 
Weibull and Normal distributions to the observed annual GHI and DNI datasets, which allowed 
us to determine the key parameters defining each distribution. For the Normal distribution, 
these parameters are the mean (μ) and standard deviation (σ), while for the Weibull distribu-
tion, they are the shape (k) and scale (λ) parameters. Subsequently, we randomly generated 
1000 values using these parameters, thereby creating an extended dataset of annual GHI and 
DNI values for the selected locations, fitting both Normal and Weibull distributions. Table 2 
provides a summary of the observed and synthetically generated databases. 

Table 2. Observed and synthetically generated databases. 

Variable  Type of data Fit Length 

GHI 
Observed -  20 to 25 values 
Synthetic Normal 1000 values 
Synthetic Weibull 1000 values 

DNI 
Observed -  20 to 25 values 
Synthetic Normal 1000 values 
Synthetic Weibull 1000 values 

3. Results and Evaluation 

3.1 Impact of the distribution assumption on the calculation of bad and 
worst-case scenarios 

In this section, we computed the Representative Solar Year (RSY) for the Direct Normal Irra-
diance (DNI) based on the Spanish standard UNE 206011:2014 [12]. Additionally, we deter-
mined the bad and worst-case scenarios in line with the Spanish standard UNE 206013:2017, 
which assumes that the annual DNI adheres to a Weibull distribution. We calculated the Prob-
ability of Exceedance at 90% (PoE90) and 99% (PoE99) in two scenarios, one where the an-
nual DNI is assumed to follow a normal distribution and the other assuming a Weibull distribu-
tion. The results of these calculations are presented in Table 3. 
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Table 3. RSY and PoE values of the annual DNI obtained for the selected locations applying the said 
Spanish standards assuming either a Normal and a Weibull distribution. 

Annual DNI (kWh/m2) Normal fit Weibull fit 
Location RSY PoE 50 PoE 90 PoE 99 PoE 50 PoE 90 PoE 99 

Sevilla 2107 2107 1977 1871 2119 1936 1713 
Toravere 1012 1012 906 820 1021 880 731 

GoodwinCreek 1672 1672 1573 1492 1680 1540 1381 
Boulder 2079 2079 1961 1865 2092 1954 1795 
Brasilia 1923 1923 1798 1695 1935 1768 1580 

Tamanrasset 2441 2441 2322 2225 2451 2274 2072 

It's important to note that in all the locations, the Representative Solar Year (RSY) 
aligns with the Probability of Exceedance at 50% (PoE50) when the data is fitted to a Normal 
distribution. However, when the data is fitted to a Weibull distribution, the PoE50 is higher than 
the RSY for all the locations. This discrepancy in the distribution type results in considerably 
lower values for PoE90 and PoE99 when assuming a Weibull distribution. Table 4 displays the 
percentage difference in the annual cumulative values compared to the reference values ob-
tained in Table 3, where the normal fit was used as a reference. 

Table 4. Percentage difference in the annual cumulative values when fitting data to a Normal distribu-
tion instead to a Weibull. 

PoE difference (%) 
Location PoE 50 PoE 90 PoE 99 

Sevilla 0.54% -2.07% -7.49% 
Toravere 0.81% -2.93% -10.83% 

GoodwinCreek 0.50% -2.07% -7.39% 
Boulder 0.65% -0.33% -3.75% 
Brasilia 0.58% -1.65% -6.78% 

Tamanrasset 0.41% -2.05% -6.88% 

Given that all the locations exhibit similar trends, we will focus our graphical evaluation 
on the Seville location. Figure 1 illustrates the cumulative distribution function (CDF) of the 
annual DNI for Seville over the period 2000-2022. Additionally, we provide the PoE50, PoE90, 
and PoE99 values for both, Weibull and Normal fits, as well as the RSY calculated following 
the aforementioned Spanish standards. 
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Figure 1. CDF of the annual DNI for the location of Seville (period 2000-2022). The plot shows in cian 
the observed data, in blue the Weibull fit and in red the Normal Fit. We also present the P50, P90 and 

P99 for both fits and the RSY calculated following [12] 

The primary distinction in the cumulative distribution functions (CDFs) arises in the tail 
of the distribution, resulting in larger differences as the Probability of Exceedance (PoE) in-
creases. For instance, in Seville, the disparities in PoE90 are around 2%, while the differences 
in PoE99 expand to approximately 7.5%, with the Weibull fit yielding lower values. 

3.2 Goodness of fit evaluation 

We utilize both h and p-values to quantitatively assess the goodness of fit. These values offer 
an objective measure of the strength of evidence supporting the null hypothesis, which is the 
assumption that the annual solar irradiation series conform to a specific distribution (Normal or 
Weibull). 

• Low p-values indicate that the sample provides substantial evidence to reject the null 
hypothesis for the entire population. In simpler terms, low p-values suggest that the 
annual solar radiation series do not conform to a particular distribution. In statistics, it 
is customary to reject the null hypothesis when the p-value is less than 0.05. When the 
null hypothesis is rejected, the h-value becomes 1. 

• High p-values, on the other hand, imply weak evidence against the null hypothesis. In 
other words, high p-values suggest that the annual solar radiation series do conform to 
a particular distribution. When the null hypothesis is not rejected, the h-value becomes 
0. 

Table 5 displays the obtained h and p-values resulting from the selected goodness of fit 
tests for the six locations with varying climates. 
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Table 5. Obtained h and p-values result of the selected goodness of fit tests for the six selected loca-
tions with different climates. Calculations are performed for DNI and GHI 

Seville DNI Observed Series Normal Distribution fit Weibull Distribution fit 
h-value p-value h-value p-value h-value p-value 

Shapiro-Wilk (N) 0 0.50 0 0.68 1 0.01 
Lilliefors (N) 0 0.31 0 0.66 1 0.01 
Anderson D. (W) 0 0.05 1 0.00 0 0.16 

Seville GHI Observed Series Normal Distribution fit Weibull Distribution fit 
h-value p-value h-value p-value h-value p-value 

Shapiro-Wilk (N) 0 0.67 0 0.46 1 0.01 
Lilliefors (N) 0 0.28 0 0.31 1 0.01 
Anderson D. (W) 0 0.22 1 0.00 0 0.18 

Tamanrasset DNI Observed Series Normal Distribution fit Weibull Distribution fit 
h-value p-value h-value p-value h-value p-value 

Shapiro-Wilk (N) 0 0.40 0 0.11 1 0.01 
Lilliefors (N) 0 0.48 0 0.15 1 0.01 
Anderson D. (W) 1 0.02 1 0.00 0 0.35 

Tamanrasset GHI Observed Series Normal Distribution fit Weibull Distribution fit 
h-value p-value h-value p-value h-value p-value 

Shapiro-Wilk (N) 0 0.32 0 0.29 1 0.01 
Lilliefors (N) 0 0.71 0 0.55 1 0.01 
Anderson D. (W) 1 0.01 1 0.00 1 0.02 

Toravere DNI Observed Series Normal Distribution fit Weibull Distribution fit 
h value p value h value p value h value p value 

Shapiro-Wilk (N) 0 0.56 0 0.74 1 0.01 
Lilliefors (N) 0 0.49 0 0.37 1 0.01 
Anderson D. (W) 0 0.16 1 0.00 0 0.55 

Toravere GHI Observed Series Normal Distribution fit Weibull Distribution fit 
h value p value h value p value h value p value 

Shapiro-Wilk (N) 0 0.06 0 0.95 1 0.01 
Lilliefors (N) 0 0.10 0 0.54 1 0.01 
Anderson D. (W) 1 0.00 1 0.00 0 0.09 

GoodwinCreek DNI Observed Series Normal Distribution fit Weibull Distribution fit 
h-value p-value h-value p-value h-value p-value 

Shapiro-Wilk (N) 0 0.88 0 0.30 1 0.01 
Lilliefors (N) 0 0.97 0 0.75 1 0.01 
Anderson D. (W) 0 0.31 1 0.00 0 0.65 

GoodwinCreek GHI Observed Series Normal Distribution fit Weibull Distribution fit 
h-value p-value h-value p-value h-value p-value 

Shapiro-Wilk (N) 0 0.75 0 0.37 1 0.01 
Lilliefors (N) 0 0.61 0 0.29 1 0.01 
Anderson D. (W) 0 0.36 1 0.00 0 0.06 

Brasilia DNI Observed Series Normal Distribution fit Weibull Distribution fit 
h value p value h value p value h value p value 

Shapiro-Wilk (N) 0 0.65 0 0.20 1 0.01 
Lilliefors (N) 0 0.29 0 0.09 1 0.01 
Anderson D. (W) 0 0.26 1 0.00 0 0.51 
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Brasilia GHI Observed Series Normal Distribution fit Weibull Distribution fit 
h value p value h value p value h value p value 

Shapiro-Wilk (N) 0 0.68 0 0.22 1 0.01 
Lilliefors (N) 0 0.78 0 0.10 1 0.01 
Anderson D. (W) 0 0.30 1 0.00 0 0.29 

Boulder DNI Observed Series Normal Distribution fit Weibull Distribution fit 
h value p value h value p value h value p value 

Shapiro-Wilk (N) 0 0.63 0 0.51 1 0.00 
Lilliefors (N) 0 0.31 0 0.58 1 0.00 
Anderson D. (W) 0 0.92 1 0.00 0 0.74 

Boulder GHI Observed Series Normal Distribution fit Weibull Distribution fit 
h value p value h value p value h value p value 

Shapiro-Wilk (N) 0 0.15 0 0.60 1 0.00 
Lilliefors (N) 1 0.02 0 0.33 1 0.00 
Anderson D. (W) 0 0.53 1 0.00 0 0.70 

4. Conclusions 

This study yields three primary conclusions: 

• The Probability of Exceedance (PoE) at the 50th percentile (PoE50) calculated by fitting 
observed annual Direct Normal Irradiance series to a normal distribution aligns with the 
value of the Representative Solar Year (RSY), equivalent to the Typical Meteorological 
Year (TMY) but accounting solely for DNI. In contrast, when fitting the DNI series to a 
Weibull distribution, PoE50 results in annual values that are, on average, 0.6% higher 
than the RSY. 

• Assuming that DNI follows a Weibull distribution instead of a Normal distribution leads 
to extreme scenarios with values that are, on average, up to 2% lower for PoE90 and 
7% lower for PoE99. This shift in distribution negatively impacts the financing condi-
tions for stakeholders in solar energy systems. 

• We don´t find evidence to support the rejection of the null hypothesis, which posits that 
the annual DNI follows neither a Weibull nor a Normal distribution. In other words, there 
is no compelling evidence to suggest that the annual DNI conforms more to a Weibull 
distribution than to a Normal distribution. 
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