Tailoring of Interface Quality of MoOx/Si Solar Cells

Authors

DOI:

https://doi.org/10.52825/siliconpv.v1i.884

Keywords:

Transition Metal Oxides, Selective Contacts, Sputtering, Barrier Height

Abstract

Transition metal oxide films (TMO) as passivating contacts with improved opto-electronic characteristics play an important role in improving the silicon solar cell device efficiency. In this report, the effect of sputtering power on the optical properties of MoOx and the quality of MoOx/n-Si interface for its application in a silicon solar cell as carrier selective contacts has been reported. The optical transmittance of the film greater than 80 % in the visible and near infrared region of the spectrum is observed, which further improved with sputtering power. The creation of oxygen ion vacancies, which acts as positively charged structural defects able to capture one or two electrons led to the decrease of optical band gap from 3.70 eV to 3.23 eV at higher power. The oxygen vacancies occupied by electrons acts as donor centers, which lies close to the valence band, were responsible for modulation in electrical properties. The electrical properties of MoOx/n-Si interface was analyzed using current-voltage (I-V) measurements for its application as selective contact. A significant change in the selectivity parameters, like barrier height, I0 and series resistance of MoOx, has been observed with dc power. These extracted parameters showed that the sputtering power has a great influence on the selectivity of the charge carriers.

Downloads

Download data is not yet available.

References

L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells, vol. 145, 109, 2016. Doi: https://doi.org/10.1016/j.solmat.2015.08.028.

M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle, “Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells,” Sol. Energy Mater. Sol. Cells, vol. 142, 34, 2015. Doi: https://doi.org/10.1016/j.solmat.2015.05.031.

T. Xie, G. Liu, B. Wen, J. Y. Ha, N. V. Nguyen, A. Motayed, and R. Debnath, “Tunable ultraviolet photo response in solution-processed p-n junction photodiodes based on transition-metal oxides,” ACS Appl. Mater. Interfaces, vol. 7, 9660, 2015. Doi: https://doi.org/10.1021/acsami.5b01420.

J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, “Transition metal oxides for organic electronics: Energetics, device physics and applications,” Adv. Mater., vol. 24, 5408, 2012. Doi: https://doi.org/10.1002/adma.201201630.

Z. Hussain, “Optical and electrochromic properties of heated and annealed MoO3 thin films,” J. Mater. Res., vol. 16, 2695, 2001. Doi: https://doi.org/10.1557/JMR.2001.0369.

C. S. Hsu, C. C. Chan, H. T. Huang, C. H. Peng, and W. C. Hsu, “Electrochromic properties of nanocrystalline MoO3 thin films,” Thin Solid Films, vol. 516, 4839, 2008. Doi: https://doi.org/10.1016/j.tsf.2007.09.019.

Bobeico E, Mercaldo LV, Morvillo P, Usatii I, Della Noce M, Lancellotti L, Sasso C, Ricciardi R, Delli Veneri P., “Evaporated MoOx as general back-side hole collector for solar cells,” Coatings, vol. 10, 1, 2020. Doi: https://doi.org/10.3390/COATINGS10080763.

S. Subbarayudu, V. Madhavi, and S. Uthanna, “Growth of MoO3 Films by RF Magnetron Sputtering: Studies on the Structural, Optical, and Electrochromic Properties,” vol. 2013, 2013.

R. Yordanov, S. Boyadjiev, V. Georgieva, and L. Vergov, “Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications,” J. Phys. Conf. Ser., vol. 514, no. 1, 2014, Doi: https://doi.org/10.1088/1742-6596/514/1/012040.

A. Tyagi, J. Biswas, K. Ghosh, A. Kottantharayil, and S. Lodha, “Performance Analysis of Silicon Carrier Selective Contact Solar Cells with ALD MoOx as Hole Selective Layer,” Silicon, 2021. Doi: https://doi.org/10.1007/s12633-021-00984-x.

R. S. Patil, M. D. Uplane, and P. S. Patil, “Structural and optical properties of electro-deposited molybdenum oxide thin films,” Appl. Surf. Sci., vol. 252, 8050, 2006. Doi: https://doi.org/10.1016/j.apsusc.2005.10.016.

H. Simchi, B. E. McCandless, T. Meng, J. H. Boyle, and W. N. Shafarman, “Characterization of reactively sputtered molybdenum oxide films for solar cell application,” J. Appl. Phys., vol. 114, 2013. Doi: https://doi.org/10.1063/1.4812587.

G. Wang, C. Zhang, H. Sun, Z. Huang, and S. Zhong, “Understanding and design of efficient carrier-selective contacts for solar cells Understanding and design of efficient carrier-selective contacts for solar cells,” vol. 115026, no. July, 2021. Doi: https://doi.org/10.1063/5.0063915.

S. Swann, “Magnetron sputtering,” Phys. Technol., vol. 19, 67, 1988. Doi: https://doi.org/10.1088/0305-4624/19/2/304.

S. Kumari, K. Singh, P. Singh, S. Kumar, and A. Thakur, “Thickness dependent structural, morphological and optical properties of molybdenum oxide thin films,” SN Appl. Sci., vol. 2, 1, 2020. Doi: https://doi.org/10.1007/s42452-020-3193-2.

Q. Huang, S. Hu, J. Zhuang, and X. Wang, “MoO3-x based hybrids with tunable localized surface plasmon resonances: Chemical oxidation driving transformation from ultra-thin nanosheets to nanotubes,” Chem. - A Eur. J., vol. 18, 15283, 2012. Doi: https://doi.org/10.1002/chem.201202630.

Q. Huang, S. Hu, J. Zhuang, and X. Wang, “MoO3-x based hybrids with tunable localized surface plasmon resonances: Chemical oxidation driving transformation from ultra-thin nanosheets to nanotubes,” Chem. - A Eur. J., vol. 18, 15283, 2012. Doi: https://doi.org/10.1002/chem.201202630.

K. Srinivasa Rao, B. Rajini Kanth, and P. K. Mukhopadhyay, “Optical and IR studies on RF magnetron sputtered ultra-thin MoO3 films,” Appl. Phys. A Mater. Sci. Process., vol. 96, 985, 2009. Doi: https://doi.org/10.1007/s00339-009-5132-3.

M. Mohammadbeigi, L. Jamilpanah, B. Rahmati, S. M. Mohseni, “Sulfurization of planar MoO3 optical crystals: Enhanced Raman response and surface porosity,” Mater. Res. Bull. 118, 110527 (2019). Doi: https://doi.org/10.1016/j.materresbull.2019.110527.

M. Rabizadeh, M. H. Ehsani, and M. M. Shahidi, “Tuning of physical properties in MoO3 thin films deposited by DC sputtering,” Opt. Quantum Electron., vol. 53, 1, 2021. Doi: https://doi.org/10.1007/s11082-021-03360-6.

M. M. Makhlouf, H. Khallaf, and M. M. Shehata, “Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application,” Appl. Phys. A Mater. Sci. Process., vol. 128, 1, 2022. Doi: https://doi.org/10.1007/s00339-021-05215-z.

Downloads

Published

2024-02-29

How to Cite

Kumar, A., Jyoti, Tomer, S., Vandana, S. K. Srivastava, Mrinal Dutta, & Prathap Pathi. (2024). Tailoring of Interface Quality of MoOx/Si Solar Cells. SiliconPV Conference Proceedings, 1. https://doi.org/10.52825/siliconpv.v1i.884

Conference Proceedings Volume

Section

Carrier Selective Contacts, Metallization and Contact Formation