Influence of Material Models on the Numerical Predictions of Thermomechanical Behavior of Silicon Photovoltaic Modules
DOI:
https://doi.org/10.52825/siliconpv.v1i.864Keywords:
Photovoltaic Modules, Thermomechanics, Numerical Simulation, FEMAbstract
Silicon photovoltaic (PV) modules are made using different materials, namely glass, EVA, silicon, and a backsheet material such as PET. To develop a numerical thermomechanical PV module model capable of providing accurate predictions, the influence of the material models on the predictions must be analyzed. A two-dimensional, thermomechanical, finite-element (FE) model of PV modules was created, and it was able to reproduce some experimental measurements. It was then used to study the influence of the material models on the numerical predictions. Attention was given to the material models of EVA and silicon. Firstly, the material model of EVA was considered, and the predictions of the following models were compared: linear elastic, temperature-dependent linear elastic, and viscoelastic. Secondly, as the coefficient of thermal expansion (CTE) plays a major role in the thermomechanical behavior, the influence of its temperature dependence on the predictions was compared. The numerical results show that it is necessary to use a viscoelastic EVA model to reproduce the experimental data of the change in cells gap. It was also found that the temperature dependence of the CTE of EVA and silicon has significant influence on the module deflection and stress, hence it should be taken into consideration in future numerical studies.
Downloads
References
A. Omazic et al., “Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review,” Sol. Energy Mater. Sol. Cells, vol. 192, pp. 123–133, Apr. 2019, doi: 10.1016/j.solmat.2018.12.027.
M. A. Munoz, M. C. Alonso-García, N. Vela, and F. Chenlo, “Early degradation of silicon PV modules and guaranty conditions,” Sol. Energy, vol. 85, no. 9, pp. 2264–2274, Sep. 2011, doi: 10.1016/j.solener.2011.06.011.
K. J. Geretschläger, G. M. Wallner, and J. Fischer, “Structure and basic properties of photovoltaic module backsheet films,” Sol. Energy Mater. Sol. Cells, vol. 144, pp. 451–456, Jan. 2016, doi: 10.1016/j.solmat.2015.09.060.
C. T. Machado and F. S. Miranda, “Energia Solar Fotovoltaica: Uma Breve Revisão,” Revista Virtual de Química, vol. 7, no. 1, Art. no. 1, 2015.
U. Eitner, S. Kajari-Schröder, M. Köntges, and H. Altenbach, “Thermal Stress and Strain of Solar Cells in Photovoltaic Modules,” in Shell-like Structures, in Adv. Struct. Mater., vol. 15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 453–468. doi: 10.1007/978-3-642-21855-2_29.
R. W. Cahn, P. Haasen, and E. J. Kramer, “Materials Science and Technology — A Comprehensive Treatment,” Int. J. Mater. Res., vol. 84, no. 2, pp. 90–90, Feb. 1993, doi: 10.1515/ijmr-1993-840206.
E. H. Amalu, D. J. Hughes, F. Nabhani, and J. Winter, “Thermomechanical deformation degradation of crystalline silicon photovoltaic (c-Si PV) module in operation,” Eng. Fail. Anal., vol. 84, pp. 229–246, Feb. 2018, doi: 10.1016/j.engfailanal.2017.11.009.
N. Bosco, M. Springer, and X. He, “Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input,” IEEE J. Photovolt., vol. 10, no. 5, pp. 1424–1440, Sep. 2020, doi: 10.1109/JPHOTOV.2020.3005086.
U. Eitner, “Thermomechanics of photovoltaic modules,” Doctoral thesis, Universitäts- und Landesbibliothek Sachsen-Anhalt, 2011. [Online]. Available: https://opendata.uni-halle.de//handle/1981185920/7357 (20/04/2023).
K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, “Linear thermal expansion measurements on silicon from 6 to 340 K,” J. Appl. Phys., vol. 48, no. 3, pp. 865–868, Mar. 1977, doi: 10.1063/1.323747.
R. B. Roberts, “Thermal expansion reference data: silicon 300-850 K,” J. Phys. D: Appl. Phys., vol. 14, no. 10, p. L163, Oct. 1981, doi: 10.1088/0022-3727/14/10/003.
F. Kraemer and S. Wiese, “FEM simulations of back contact solar modules during temperature cycling,” in 2013 14th EuroSimE, Wroclaw: IEEE, Apr. 2013, pp. 1–8. doi: 10.1109/EuroSimE.2013.6529964.
L. Yixian and A. A. O. Tay, “Finite element thermal stress analysis of a solar photovoltaic module,” in 2011 37th IEEE Photovolt. Spec. Conf., Seattle, WA, USA: IEEE, Jun. 2011, pp. 003179–003184. doi: 10.1109/PVSC.2011.6186616.
A. J. Beinert et al., “Enabling the measurement of thermomechanical stress in solar cells and PV modules by confocal micro-Raman spectroscopy,” Sol. Energy Mater. Sol. Cells, vol. 193, pp. 351–360, May 2019, doi: 10.1016/j.solmat.2019.01.028.
M. Paggi, S. Kajari-Schröder, and U. Eitner, “Thermomechanical deformations in photovoltaic laminates,” J. Strain. Anal. Eng. Des., vol. 46, no. 8, pp. 772–782, Nov. 2011, doi: 10.1177/0309324711421722.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Saif Addeen Al-Manaseer, J. Pedro Correia, Siham Touchal
This work is licensed under a Creative Commons Attribution 4.0 International License.