On the General Current Dependence of the Distributed Series Resistance of Solar Cells: The Influence of the Base Resistivity

Authors

DOI:

https://doi.org/10.52825/siliconpv.v1i.854

Keywords:

Distributed Series Resistance, Lumped Series Resistance, Current-Dependent Series Resistance, Joule Losses, Linear Response, Equivalent Circuit

Abstract

The lumped series resistance Rs of a silicon solar cell isn’t constant but depends on the operating point of the solar cell. For describing the relevant current dependence analytically, only few theories exist that can easily be applied to experiments. These are: (i) the ad-hoc modelling by Araújo et al., modified by Breitenstein et al., and (ii) the LR-Rs approach by Wagner et al. Both have fundamental limitations: Whereas Araújo’s ad-hoc model is partly unphysical, the LR-Rs approach misses the influence of the base resistivity. Here, we discuss these shortcomings, and we show where to include the base resistivity in the LR-Rs approach. In addition, we discuss the current dependence of the lumped series resistance of a solar cell in general terms, thereby clarifying the underlying physical basics.

Downloads

Download data is not yet available.

References

M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Advanced Energy Conversion, vol. 3, no. 2, pp. 455–479, Apr.–Jun. 1963, doi: https://doi.org/10.1016/0365-1789(63)90063-8.

D. K. Bhattacharya, A. Mansingh, and P. Swarup, “Dependence of series resistance on operating current in p-n junction solar cells,” Solar Cells, vol. 18, no. 2, pp. 153–162, Aug. 1986, doi: https://doi.org/10.1016/0379-6787(86)90033-5.

A. Zekry and A. Y. Al-Mazroo, “A distributed SPICE-model of a solar cell,” IEEE Trans. Electron Devices, vol. 43, no. 5, pp. 691–700, May 1996, doi: https://doi.org/10.1109/16.491244.

K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovoltaics Res. Appl., vol. 21, no. 4, pp. 490–499, Jun. 2013, doi: https://doi.org/10.1002/pip.1216.

M. Turek, “Current and illumination dependent series resistance of solar cells,” J. Appl. Phys., vol. 115, no. 14, Art. no. 144503, Apr. 2014, doi: https://doi.org/10.1063/1.4871017.

K. Rajkanan and J. Shewchun, “A better approach to the evaluation of the series resistance of solar cells,” Solid-State Electronics, vol. 22, no. 2, pp. 193–197, Feb. 1979, doi: https://doi.org/10.1016/0038-1101(79)90112-6.

G. L. Araújo, A. Cuevas, and J. M. Ruiz, “The effect of distributed series resistance on the dark and illuminated current–voltage characteristics of solar cells,” IEEE Trans. Electron Devices, vol. ED-33, no. 3, pp. 391–401, Mar. 1986, doi: https://doi.org/10.1109/T-ED.1986.22500.

A. G. Aberle, S. R. Wenham, and M. A. Green, “A new method for accurate meas-urements of the lumped series resistance of solar cells,” in Conf. Rec. 23rd IEEE Pho-tovoltaic Specialists Conf., May 1993, pp. 133–139, doi: https://doi.org/10.1109/PVSC.1993.347065.

P. P. Altermatt, G. Heiser, A. G. Aberle, A. Wang, J. Zhao, S. J. Robinson, S. Bowd-en, and M. A. Green, “Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells,” Prog. Photovoltaics Res. Appl., vol. 4, no. 6, pp. 399–414, Nov./Dec. 1996, doi: https://doi.org/10.1002/(SICI)1099-159X(199611/12)4:6%3C399::AID-PIP148%3E3.0.CO;2-4.

K. C. Fong, K. R. McIntosh, A. W. Blakers, and E. T. Franklin, “Series resistance as a function of current and its application in solar cell analysis,” in Conf. Rec. 37th IEEE Photovoltaic Specialists Conf., Jun. 2011, pp. 2257–2261, doi: https://doi.org/10.1109/PVSC.2011.6186405.

O. Breitenstein and S. Rißland, “A two-diode model regarding the distributed series resistance,” Sol. Energy Mater. Sol. Cells, vol. 110, pp. 77–86, Mar. 2013, doi: https://doi.org/10.1016/j.solmat.2012.11.021.

M. Loulou, M. K. Al Turkestan, N. Brahmi, and M. Abdelkrim. (2018). Current dependence of series and shunt resistances of solar cells. Presented at IREC 2018. [Online]. Available: https://doi.org/10.1109/IREC.2018.8362494.

D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 18, pp. 1698–1706, Nov. 2007, doi: https://doi.org/10.1016/j.solmat.2007.05.026.

J. E. Mahan and G. M. Smirnov, “A new perspective on distributed series resistance effects in photovoltaic devices,” in Conf. Rec. 14th IEEE Photovoltaic Specialists Conf., Jan. 1980, pp. 612–618, doi: n/a.

S. R. Dhariwal, S. Mittal, and R. K. Mathur, “Theory for voltage dependent series re-sistance in silicon solar cells,” Solid-State Electronics, vol. 27, no. 3, pp. 267–273, Mar. 1984, doi: https://doi.org/10.1016/0038-1101(84)90123-0.

A. Vishnoi, R. Gopal, R. Dwivedi, and S. K. Srivastava, “Distributed parameter analysis of dark I–V characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor,” Proc. Inst. Elect. Eng., vol. 140, pt. G (Circuits, Devices, Systems), no. 3, pp. 155–164, Jun. 1993, doi: https://doi.org/10.1049/ip-g-2.1993.0025.

G. M. Smirnov and J. E. Mahan, “Distributed series resistance in photovoltaic devices; intensity and loading effects,” Solid-State Electronics, vol. 23, no. 10, pp. 1055–1058, Oct. 1980, doi: https://doi.org/10.1016/0038-1101(80)90185-9.

S. Sokolic, D. Krizaj, and S. Amon, “Lumped series resistance of solar cells as a result of distributed sheet resistance,” Solid-State Electronics, vol. 36, no. 4, pp. 623–630, Apr. 1993, doi: https://doi.org/10.1016/0038-1101(93)90275-U.

J.-M. Wagner, A. Schütt, J. Carstensen, and R. Adelung, “Linear-response description of the series resistance of large-area silicon solar cells: Resolving the difference between dark and illuminated behavior,” Energy Procedia, vol. 92, pp. 255–264, Aug. 2016, doi: https://doi.org/10.1016/j.egypro.2016.07.072.

J.-M. Wagner, K. Upadhyayula, J. Carstensen, and R. Adelung, “Averaging the unaverageable: Defining a meaningful local series resistance for large-area silicon solar cells,” AIP Conf. Proc., vol. 2147, Art. no. 020019, Aug. 2019, doi: https://doi.org/10.1063/1.5123824.

J.-M. Wagner, J. Carstensen, and R. Adelung, “Fundamental Aspects Concerning the Validity of the Standard Equivalent Circuit for Large‐Area Silicon Solar Cells,” Phys. Status Solidi A, vol. 217, no. 2, Art. no. 1900612, Jan. 2020, doi: https://doi.org/10.1002/pssa.201900612.

J.-M. Wagner, J. Carstensen, and R. Adelung, Analytical Section of “Fundamental Aspects Concerning the Validity of the Standard Equivalent Circuit for Large‐Area Sil-icon Solar Cells,” Phys. Status Solidi A, vol. 217, no. 2, Jan. 2020. (Supporting Infor-mation of [21]) [Online]. Available: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpssa.201900612&file=pssa201900612-sup-0001-SuppData-S1.doc

J.-M. Wagner, J. Carstensen, and R. Adelung, “Injection dependence of the local series resistance: Extending the illumination intensity variation method,” AIP Conf. Proc., vol. 2487, Art. no. 030013, Aug. 2022, doi: https://doi.org/10.1063/5.0089259.

A. Cuevas, private communication, Nov. 2015.

J.-M. Wagner, K. Upadhyayula, J. Carstensen, and R. Adelung, “A critical review and discussion of different methods to determine the series resistance of solar cells: Rs,dark vs. Rs,light?,” AIP Conf. Proc., vol. 1999, Art. no. 020022, Aug. 2018, doi: https://doi.org/10.1063/1.5049261.

P. C. Mathur, R. Shrivastava, R. P. Sharma, P. Saxena, and J. D. Arora, “Graphical method for the evaluation of series resistance in solar cells,” Int. J. Electronics, vol. 52, no. 6, pp. 589–595, Jun. 1982, doi: https://doi.org/10.1080/00207218208901470.

J. D. Arora, A. V. Verma, and M. Bhatnagar, “Variation of series resistance with temperature and illumination level in diffused junction poly- and single-crystalline silicon solar cells,” J. Mater. Sci. Lett., vol. 5, no. 12, pp. 1210–1212, Dec. 1986, doi: https://doi.org/10.1007/BF01729367.

Downloads

Published

2024-02-22

How to Cite

Wagner, J.-M., Carstensen, J., & Adelung, R. (2024). On the General Current Dependence of the Distributed Series Resistance of Solar Cells: The Influence of the Base Resistivity. SiliconPV Conference Proceedings, 1. https://doi.org/10.52825/siliconpv.v1i.854

Conference Proceedings Volume

Section

Cell Characterization and Simulations