Cutting Indium Usage by 60% in SHJ-Modules Maintaining High Efficiency

Authors

DOI:

https://doi.org/10.52825/siliconpv.v2i.1323

Keywords:

Silicon Heterojunction, Indium, Transparent Conductive Oxide

Abstract

In this work the impact of reducing the Indium consumption for SHJ cells and modules is investigated. Optical simulations show that thinner Indium Tin Oxide (ITO) layers can be used on module level with minor reflection losses while on cell level losses are more severe. For extremely thin ITO layers with a thickness of 7-28 nm on texture a dielectric layer is necessary to maintain / improve the JSC level on both cell and module levels. Results (i) on solar cells (Transfer Length Method - TLM) for lateral resistance and (ii) on shunt structures for vertical electrical resistance showed that there is significant improvement potential if the doping of the layers is adapted parallel to thickness reduction. Solar cell samples with 60% reduced ITO layer thickness on front and rear sides show a similar series resistance level as the 70 nm reference but lower JSC. Optical simulation showed that module integration will recover most of the lost JSC resulting in an expected 0.5%abs. efficiency loss for samples with total (front & rear side) 60% less Indium without adding any process steps. Applying an additional dielectric film enables 80% Indium reduction on the front side with JSC gain on cell level and similar JSC on module level compared to the ITO with reference thickness.

Downloads

Download data is not yet available.

References

[1] VDMA: ITRPV 14. Edition

[2] Zhang, Yuchao; Kim, Moonyong; Wang, Li; Verlinden, Pierre; Hallam, Brett (2021): Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption. In Energy Environ. Sci. 14 (11), pp. 5587–5610. DOI: https://doi.org/10.1039/D1EE01814K.

[3] Gervais, Estelle; Herceg, Sina; Nold, Sebastian; Weiß, Karl-Anders (2021): Sustainability strategies for PV: framework, status and needs. In EPJ Photovolt. 12, p. 5. DOI: https://doi.org/10.1051/epjpv/2021005.

[4] Bätzner, D. L.; Papet, P.; Legradic, B.; Lachenal, D.; Kramer, R.; Kössler, T. et al. (2019): ‘HJT 2.0’ Performance Improvements and Cost Benefits for Silicon Heterojuntion Cell Production. 4 pages / 36th European Photovoltaic Solar Energy Conference and Exhibition; 300-303. DOI: https://doi.org/10.4229/EUPVSEC20192019-2EO.1.3.

[5] Morales-Vilches, Anna B.; Cruz, Alexandros; Pingel, Sebastian; Neubert, Sebastian; Mazzarella, Luana; Meza, Daniel et al. (2019): ITO-Free Silicon Heterojunction Solar Cells With ZnO:Al/SiO 2 Front Electrodes Reaching a Conversion Efficiency of 23%. In IEEE J. Photovoltaics 9 (1), pp. 34–39. DOI: https://doi.org/10.1109/JPHOTOV.2018.2873307.

[6] Can Han; Rudi Santbergen; Max Duffelen; Paul Procel; Yifeng Zhao; Guangtao Yang et al.: Towards bifacial silicon heterojunction solar cells with reduced TCO use, DOI: https://doi.org/10.1002/pip.3550

[7] Jay, Frederic; Gageot, Tristan; Pinoit, Gabriel; Thiriot, Benjamin; Veirman, Jordi; Cabal, Raphael et al. (2022): Reduction in Indium Usage for Silicon Heterojunction Solar Cells in a Short‐Term Industrial Perspective. In Sol. RRL, p. 2200598. DOI: https://doi.org/10.1002/solr.202200598.

[8] Luderer, C.; Messmer, C.; Hermle, M.; Bivour, M. (2019): Contact Resistivity of the TCO/a-Si:H/c-Si Heterojunction. 3 pages / 36th European Photovoltaic Solar Energy Conference and Exhibition; 538-540. DOI: https://doi.org/10.4229/EUPVSEC20192019-2DV.1.48.

[9] McIntosh, Keith R.; Baker-Finch, Simeon C. (2012): OPAL 2: Rapid optical simulation of silicon solar cells. In: 2012 38th IEEE Photovoltaic Specialists Conference. 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). Austin, TX, USA, 03.06.2012 - 08.06.2012: IEEE, pp. 265–271. https://doi.org/10.1109/PVSC.2012.6317616

[10] Holman, Zachary C.; Filipič, Miha; Descoeudres, Antoine; Wolf, Stefaan de; Smole, Franc; Topič, Marko; Ballif, Christophe (2013): Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. In Journal of Applied Physics 113 (1), Arti-cle 013107. DOI: https://doi.org/10.1063/1.4772975.

[11] Heitmann, U.; Tutsch, L.; Rose, A. de; Dreja, D.; Jakob, L.; Elgazzar, R. et al. (2022): Reduction of ITO by a Low-Cost Sprayed TIOx Capping Layer for SHJ Solar Cells. 4 pages / 8th World Conference on Photovoltaic Energy Conversion; 59-62. DOI: https://doi.org/10.4229/WCPEC-82022-1BO.3.3.

[12] Cao Yu; Qiaojiao Zou; Qi Wang; Yu Zhao; Xiaochao Ran; Gangqiang Dong et al.: Silicon solar cell with undoped tin oxide transparent electrode, DOI: https://doi.org/10.1038/s41560-023-01331-7.

[13] Schmid, Philipp; Wolke, Winfried; Nagel, Henning; Tutsch, Leonard; Georgiou-Sarlikiotis, Vasileios; Steinmetz, Anamaria et al. (2023): Reducing Indium Consumption in Silicon Hetero Junction Solar Cells With TCO Stack Systems of ITO and AZO. In IEEE J. Photovoltaics 13 (5), pp. 646–655. DOI: https://doi.org/10.1109/JPHOTOV.2023.3267175.

Downloads

Published

2024-12-20

How to Cite

Pingel, S., Voicu Vulcanean, I., Röhnelt, C., Wolke, W., Georgiou-Sarlikiotis, V., Krieg, A., … Steinmetz, A. (2024). Cutting Indium Usage by 60% in SHJ-Modules Maintaining High Efficiency. SiliconPV Conference Proceedings, 2. https://doi.org/10.52825/siliconpv.v2i.1323

Conference Proceedings Volume

Section

Advanced Manufacturing, Challenges for Industrial Devices
Received 2024-05-06
Accepted 2024-10-01
Published 2024-12-20

Funding data