Characterisation of SiOX / SiNX Surface Passivation Using Time-of-Flight Elastic Recoil Detection Analysis

Authors

DOI:

https://doi.org/10.52825/siliconpv.v2i.1315

Keywords:

Hydrogen, ToF-ERDA, Passivation, Interfaces

Abstract

An accurate description of the distribution of hydrogen at solar cell interfaces is critical for understanding both passivation and degradation phenomena. Time-of-flight elastic recoil detection analysis (ToF-ERDA) has recently been employed to study this hydrogen distribution by providing a one-dimensional (1D) depth profile. In this work, ToF-ERDA was used to investigate the hydrogen profile in a SiOX / SiNX passivating stack. The ability to resolve the interface with the c-Si interface was studied by using polished wafers and thin (20 nm) passivating stacks. This approach, coupled with Monte Carlo ERD (MCERD) modelling, showed that the identification of the interfacial oxide was much more clearly defined compared with previous reports using ToF-ERDA. Annealing the SiOX / SiNX at 450 °C for 5 minutes substantially increased the effective lifetime. However, no noticeable change in the H distribution measured with ToF-ERD was observed. We comment on the difficulty of correlating physical hydrogen measurements with the surface recombination properties.

Downloads

Download data is not yet available.

References

[1] B. Hallam, D. Chen, M. Kim, B. Vicari Stefani, B. Hoex, M. Abbott, S. Wenham, “The role of hydrogenation and gettering in enhancing the efficiency of next-generation Si Solar Cells: An industrial perspective”, physica status solidi (a), vol. 214, pp. 1700305, 2017, doi: https://doi.org/10.1002/pssa.201700305.

[2] R. S. Bonilla, B. Hoex, P. Hamer, P.R. Wilshaw, “Dielectric surface passivation for silicon solar cells: A review”, physica status solidi (a), vol. 214, pp. 1700293, 2017, doi: https://doi.org/10.1002/pssa.201700293.

[3] C. Ballif, F.-J. Haug, M. Boccard, P. Verlinden, G. Hahn, “Status and perspectives of crystalline silicon photovoltaics in research and industry”, Nature Review Materials, vol. 7, pp. 597-616, 2022, doi: https://doi.org/10.1038/s41578-022-00423-2.

[4] D. Chen, M. Vaqueiro Contreras, A. Ciesla, P. Hamer, B. Hallam, M. Abbott, C. Chan, “Progress in the understanding of light-and elevated temperature-induced degradation in silicon solar cells: a review”, Progress in Photovoltaics: Research and Applications, vol. 29, pp. 1180-1201, 2021, doi: https://doi.org/10.1002/pip.3362.

[5] J. Schmidt, D Bredemeier, D.C. Walter, “On the Defect Physics Behind Light and Elevated Temperature-Induced Degradation (LeTID) of Multicrystalline Silicon Solar Cells”, IEEE Journal of Photovoltaics, vol. 9, pp. 1497-1503, 2019, doi: https://doi.org/10.1109/JPHOTOV.2019.2937223.

[6] M. Winter, S. Bordihn, R. Peibst, R. Brendel, J. Schmidt, “Degradation and Regeneration of n+-Doped Poly-Si Surface Passivation on p-Type and n-Type Cz-Si Under Illumination and Dark Annealing”, IEEE JPV, vol. 10, pp. 423-430, 2020, doi: https://doi.org/10.1109/JPHTOV.2020.2964987.

[7] C. Sen, P. Hamer, A. Soeriyadi, B. Wright, M. Wright, A. Samadi, D. Chen, B. Vicari Stefani, D. Zhang, J. Wu, F. Jiang, B. Hallam, M. Abbott, “Impact of surface doping profile and passivation layers on surface-related degradation in silicon PERC solar cells”, Solar Energy Materials and Solar Cells, vol. 235, pp. 111497, 2022, doi: https://doi.org/10.1016/j.solmat.2021.111497.

[8] D. Sperber, A. Graf, D. Skorka, A. Herguth, G. Hahn, “Degradation of Surface Passivation on Crystalline Silicon and Its Impact on Light-Induced Degradation Experiments”, IEEE Journal of Photovoltaics, vol. 7, pp. 1627-1634, 2017, doi: https://doi.org/10.1109/JPHOTOV.2017.2755072.

[9] T.N. Truong, D. Yan, W. Chen, M. Tebyetekerwa, M. Young, M. Al-Jassim, A. Cuevas, D. Macdonald, H.T. Nguyen, “Hydrogenation Mechanisms of Poly-Si/SiOx Passivating Contacts by Different Capping Layers”, Solar RRL, vol. 4, pp. 1900476, 2020, doi: https://doi.org/10.1002/solr.201900476.

[10] M. Lehmann, N. Valle, J. Horzel, A. Pshenova, P. Wyss, M. Dobeli, M. Despeisse, S. Eswara, T. Wirtz, Q. Jeangros, A. Hessler-Wyser, F.-J. Haug, A. Ingenito, C. Ballif, “Analysis of hydrogen distribution and migration in fired passivating contacts (FPC)”, Solar Energy Materials and Solar Cells, vol. 200, pp. 110018, 2019, doi: https://doi.org/10.1016/j.solmat.2019.110018.

[11] Y.Shi, M. Jones, M. Meier, M. Wright, J-I. Polzin, W. Kwapil, C. Fischer, M. Schubert, C. Grovenor, M. Moody, R.S. Bonilla, “Towards accurate atom scale characterization of hydrogen passivation of interfaces in TOPCon architectures”, Solar Energy Materials and Solar Cells, vol. 246, pp. 111915, 2022, doi: https://doi.org/10.1016/j.solmat.2022.111915.

[12] S. Pal, J. Barrirero, M. Lehmann, Q. Jeangros, N. Valle, F.-J. Haug, A. Hessler-Wyser, C.N. Shyam Kumar, F. Mucklich, T. Wirtz, S. Eswara, “Quantification of hydrogen in nanostructured hydrogenated passivating contacts for silicon photovoltaics combining SIMS-APT-TEM: A multiscale correlative approach”, Applied Surface Science, vol. 555, pp. 149650, 2021, doi: https://doi.org/10.1016/j.apsusc.2021.149650.

[13] N. Aßmann, R. Søndenå, B. Hammann, W. Kwapil, E. Monakhov, “Reducing Time and Costs of FT-IR Studies of the Effect of SiNx, Dopants, and Emitters on Hydrogen Species in Si Wafers and Solar Cell Structures”, SiliconPV Conference Proceedings, vol. 1, 2024, doi: https://doi.org/10.52825/siliconpv.v1i.840.

[14] Y. Shi, M. Wright, M.K. Sharpe, C.D. McAleese, J-I. Polzin, X. Niu, Z. Zhao, S.M. Morris, R.S. Bonilla, “Characterisation of solar cell passivating contacts using time-of-flight elastic recoil detection analysis”, Applied Physics Letters, vol. 123, pp. 261106, 2023, doi: https://doi.org/10.1063/5.0174131.

[15] K. Arstila, J.A. Knapp, K. Nordlund, B.L. Boyle, “Monte Carlo simulations of multiple scattering effects in ERD measurements”, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, vol. 219-220, pp. 1058-1061, 2004, doi: https://doi.org/10.1016/j.nimb.2004.01.212.

[16] K. Arstila, J. Julin, M.I. Laitinen, J. Aalto, T. Konu, S. Karkkainen, S. Rahkonen, M. Raunio, J. Itkonen, J.-P. Santanen, T. Tuovinen, T. Sajavaara, “Potku – New analysis software for heavy ion elastic recoil detection analysis”, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, vol. 331, pp. 34-41, 2014, doi: https://doi.org/10.1016/j.nimb.2014.02.016.

Downloads

Published

2024-12-06

How to Cite

Wright, M., Sharpe, M., McAleese, C., Wang, Y., Shi, Y., & Bonilla, R. S. (2024). Characterisation of SiOX / SiNX Surface Passivation Using Time-of-Flight Elastic Recoil Detection Analysis. SiliconPV Conference Proceedings, 2. https://doi.org/10.52825/siliconpv.v2i.1315

Conference Proceedings Volume

Section

Silicon Material and Defect Engineering
Received 2024-04-28
Accepted 2024-07-26
Published 2024-12-06

Funding data