Indium Reduction Above 70% in SHJ Solar Cells: Study of the Module Stability

Authors

DOI:

https://doi.org/10.52825/siliconpv.v2i.1314

Keywords:

Silicon Solar Cells, Heterojunction, Indium, Transparent Conductive Oxide, Reliability, UV, Damp Heat

Abstract

This work focuses on reducing In-based TCO thicknesses to their minimum in SHJ solar cells with the goal to demonstrate the possibility of a drastic reduction of indium consumption in the fabrication process. On the front side, the reduction of the ITO thickness down to 15 nm implies to deposit an additional anti-reflective layer. Three anti-reflective dielectric layers have been studied (SiNx, SiOx and a bilayer SiNx/SiOx) in solar cell and module configurations to maximize the performances and evaluate the module stability under UV exposure. Lower Jsc losses after 120 kWh of UV exposure are measured with the use of thinner ITO layers, in agreement with a lower EQE deterioration in the IR range. The use of SiNx dielectric results in the highest stability under UV and to the best performances after 120 kWh. Following further optimizations of the dielectrics and TCO, the 15 nm of ITO/SiNx option was combined with a thin IMO:H TCO on the rear side. TCO thicknesses down to 30 nm were studied on the rear side resulting in overall indium reduction of 77.2% with very limited efficiency loss at the cell level (below 0.1% absolute after light-soaking). Module reliability of these very low indium content solar cells was studied under UV and damp heat treatments highlighting lower degradations than reference cells for UV and promising results after damp heat test.

Downloads

Download data is not yet available.

References

[1] LONGI Sets a New World Record of 27.09% for the Efficiency of Silicon Heterojunction Back-Contact (HBC) Solar Cells – LONGI - Available online: https://www.longi.com/en/news/heterojunction-back-contact-battery/ (accessed on 19 January 2024).

[2] H. Lin, et al., Nat. Energy, vol. 8 (2023) 789–799. https://doi.org/10.1038/s41560-023-01255-2

[3] M. Grohol, V. Constanz, et al., European Commission, «Study on the Critical Raw Materials for the EU 2023» 2023, https://www.doi.org/10.2873/725585.

[4] Y. Zhang et al., Energy Environ. Sci, vol. 14 (11) (2021) 5587–5610. https://doi.org/10.1039/D1EE01814K

[5] S.K. Chunduri, M. Schmela, et al., « Heterojunction Solar Technology 2023 Edition », TaiyangNews, 2023, , http://doi.org/10.13140/RG.2.2.22609.71522.

[6] C. Han et al., Prog Photovolt Res Appl., Vol. 30 (2022) 750–762. doi: https://doi.org/10.1002/pip.3550.

[7] A. Cruz et al., Sol. Energy Mater. & Sol. Cells, vol. 236 (2022) 111493. doi: https://doi.org/10.1016/j.solmat.2021.111493.

[8] L.-L. Senaud et al., IEEE J. Photovolt., vol. 12 (2022) 906–914. doi: https://doi.org/10.1109/JPHOTOV.2022.3176983.

[9] A. Cruz et al., IEEE J. Photovolt. , vol. 10 (2020) 703–709. doi: https://doi.org/10.1109/JPHOTOV.2019.2957665.

[10] T. Koida et al., Sol. RRL, Vol. 7 (2023) 2300381. doi: https://doi.org/10.1002/solr.202300381.

[11] P. Schmid et al., IEEE J. Photovolt., vol. 13 (2023) 646–655. doi: https://doi.org/10.1109/JPHOTOV.2023.3267175.

[12] G. Dong et al., Prog. Photovolt. Res. Appl., 31 (2023) 931-938. doi: https://doi.org/10.1002/pip.3697.

[13] T. P. Dhakal et al., IEEE Transactions on Device and Materials Reliability, vol. 12, no. 2, pp. 347-356, June 2012, doi: https://doi.org/10.1109/TDMR.2012.2186574.A.B.

[14] A.B. Morales-Vilches et al., IEEE J. Photovoltaics, vol. 9 (2019) 34–39. https://doi.org/10.1109/JPHOTOV.2018.2873307.

[15] T. Gageot, et al., Sol. Energy Mater. & Sol. Cells, vol. 261, 2023, 112512. https://doi.org/10.1016/j.solmat.2023.112512.

[16] F. Jay et al., Sol. RRL, vol. 7 (2022), 2200598. https://doi.org/10.1002/solr.202200598

[17] EN IEC 61215-1:2021: Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1 : test requirements’. (2021) Available: https://www.boutique.afnor.org/fr-fr/norme/nf-en-iec-612151/modules-photovoltaiques-pv-pour-applications-terrestres-qualification-de-la/fa195378/238021.

[18] S. Kim et al., Vacuum, vol. 108, (2014) 39-44. https://doi.org/10.1016/j.vacuum.2014.05.015.

[19] B. Demaurex et al., Appl. Phys. Lett., vol. 101 (2012) 171604. https://doi.org/10.1063/1.4764529.

[20] J. Veirman, et al., AIP Conf. Proc., vol. 2487, (2022) 020017. https://doi.org/10.1063/5.0089284.

Downloads

Published

2024-12-06

How to Cite

Lanterne, A., Monna, R., Jay, F., Gageot, T., Cabal, R., Denis, C., & Thiriot, B. (2024). Indium Reduction Above 70% in SHJ Solar Cells: Study of the Module Stability . SiliconPV Conference Proceedings, 2. https://doi.org/10.52825/siliconpv.v2i.1314

Conference Proceedings Volume

Section

Advanced Manufacturing, Challenges for Industrial Devices
Received 2024-04-28
Accepted 2024-07-25
Published 2024-12-06

Funding data