Cristobalite Formation in Fused Quartz Crucibles for Czochralski Silicon Production in Different Conditions
DOI:
https://doi.org/10.52825/siliconpv.v2i.1311Keywords:
Czochralski Process, Fused Quartz Crucibles, CristobaliteAbstract
Cristobalite is one of the quartz crystalline polymorphs that forms at above 1470 °C in its pure form and above 1000 °C for quartz glass. Its formation during the Czochralski process is therefore inevitable, and is usually controlled by doping the quartz sand with barium or barium-based coatings. The formation of cristobalite can lead to significant structural defects in silicon ingots. In this work, we studied the influence of various materials (graphite, silicon carbide and alumina) on the formation and properties of the cristobalite layer. In our study we investigated glass samples extracted from a commercially produced fused quartz crucible. The samples were heat-treated in different furnaces with different contact materials: alumina, silicon carbide and graphite. The furnace with alumina as contact material was an open-air furnace, while the two others were purged with argon. All of the heat treatment experiments lasted for 3 hours at a temperature of 1500 °C, which is the approximate temperature of the Czochralski process. After the heat treatment, the samples were investigated by light microscopy and X-ray diffraction. The results showed that the contact material is the most determining factor for the cristobalite layer’s thickness and morphology. The enhancement of cristobalite formation is the greatest by using graphite as the contact material, followed by alumina. Results indicate a retardation in phase transformation in comparison to other materials. These findings are an important step to further understanding of the cristobalite formation kinetics in fused quartz crucibles during the Czochralski process.
Downloads
References
1. S. Philipps, W. Warmuth, “Photovoltaics Report”, Frauhnhofer ISE, Germany, updated 21 February 2023. Accessed: Mar. 14, 2024. [Online]. Availble: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
2. C. Klein and C. S. Hurlbut Jr, Manual of mineralogy, 21st ed., New York, USA, John Wiley, 1993.
3. G. K. Warden, M. Juel, B. A. Gaweł, M. Di Sabatino, “Recent developments on manufacturing and characterization of fused quartz crucibles for monocrystalline silicon for photovoltaic applications”, Open Ceram., 13, 100321, Mar. 2023, doi: https://doi.org/10.1016/j.oceram.2022.100321.
4. X. Huang, T. Wang, K. Yamahara, T. Taishi, K. Hoshikawa, “In situ observation of the interfacial phase formation at Si melt/silica glass interface”, Jpn. J. Appl. Phys., vol. 39, Issue 6R, pp. 3281-3285, 2000, doi: https://doi.org/10.1143/jjap.39.3281.
5. Z. Liu, T. Carlberg, “Reactions between liquid silicon and vitreous silica”, J. Mater. Res., vol. 7, Issue 2, pp. 352-358, Feb. 1992, doi: https://www.doi.org/10.1557/jmr.1992.0352.
6. X. Huang, S. Koh, K. Wu, M. Chen, T. Hoshikawa, K. Hoshikawa, S. Uda, “Reaction at the interface between Si melt and Ba-doped silica crucible”, J. Cryst. Growth, vol. 277, Issue 1-4, Apr. 2005, pp. 154-161, doi: https://doi.org/10.1016/j.jcrysgro.2005.01.101.
7. R. L. Hansen, L. Drafall, R. McCutchan, J. Holder, L. Allen, R. Shelley, “Surface-treated Crucibles for Improved Zero Dislocation Performance,” U.S. Patent 5976247A, 1996.
8. C. Baochang, L. Aijun, J. Jun, L. Pengfei, S. Tiancong, F. Tao, “Device and method for coating quartz crucible barium hydroxide,” China Patent 102336527A, 2011.
9. K. F. Jusnes, M. Tangstad, E. Ringdalen, “Phase Transformations from Quartz to Cristobalite”, First Global Conference on Extractive Metallurgy, 2018, pp. 717-727, doi: https://doi.org/10.1007/978-3-319-95022-8_56.
10. S. Zhang, S. Tie, F. Zhang, “Cristobalite formation from the thermal treatment of amorphous silica fume recovered from the metallurgical silicon industry”, Micro Nano Lett., vol. 13, Issue 10, Oct. 2018, pp. 1465-1468, doi: https://doi.org/10.1049/mnl.2018.5167.
11. L. Pagliari, M. Dapiaggi, A. Pavese, F. Francescon, “A kinetic study of the quartz-cristobalite phase transition”, J. Eur. Ceram. Soc., vol. 33, 2013, pp. 3403-3410, doi: https://doi.org/10.1016/j.jeurceramsoc.2013.06.014.
12. X. Li, X. Yin, L. Zhang, S. He, “The devitrification kinetics of silica powder heat-treated in different condition”, J. Non-Cryst. Solids, vol. 354, 2008, pp. 3254-3259, doi: https://doi.org/10.1016/j.jnoncrysol.2008.02.016.
13. F. E. Wagstaff and K. J. Richards, “Kinetics of Crystallization of Stoichiometric SiO2 Glass in H2O Atmospheres”, J. Am. Ceram. Soc., vol. 49, 1965, pp. 118-121, doi: https://doi.org/10.1111/j.1151-2916.1966.tb15387.x.
14. F. E. Wagstaff, “Crystallization Kinetics of Internally Nucleated Vitreous Silica”, J. Am. Ceram. Soc., vol. 51, 1968, pp. 449-453, doi: https://doi.org/10.1111/j.1151-2916.1968.tb11917.x.
15. S. D. Brown and S. S. Kistler, “Devitrification of High-SiO2 glasses of the system Al2O3-SiO2”, J. Am. Ceram. Soc., vol. 42, 1959, pp. 263-270, doi : https://doi.org/10.1111/j.1151-2916.1959.tb12951.x.
16. H. Li, M. Tomozawa, V. K. Lou, “Effects of nitrogen and carbon ion implantation on devitrification of silica glasses”. J. Non-Cryst. Solids, vol. 168, 1993, pp. 56-53, doi: https://doi.org/10.1016/0022-3093(94)90120-1.
17. A. Hirsch, M. Schulze, F. Sturm, M. Trempa, C. Reimann, J. Friedrich, “Factors influencing the gas bubble evolution and the cristobalite formation in quartz glass Cz crucibles for Czochralski growth of silicon crystals”, J. Cryst. Growth, vol. 570, 2021, 126231, doi: https://doi.org/10.1016/j.jcrysgro.2021.126231.
18. K. Wiik, “Kinetics of reactions between silica and carbon”, PhD dissertation, Dept. of Inorg. Chem., Norges Tekniske Høgskole, Norway, 1990.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Gabriela Kazimiera Warden, Bartłomiej Adam Gaweł, Mari Juel, Andreas Erbe, Marisa Di Sabatino
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-26
Published 2024-12-06
Funding data
-
Norges Forskningsråd
Grant numbers 257639/E20