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Abstract. Stacking faults in epitaxial silicon wafers are structural defects that can reduce the 
recombination lifetime of the final solar cells significantly. They are known to originate mostly 
at the interface between substrate and deposited layer, at contamination particles and atomic 
steps. This work presents a non-destructive and automated characterization method on full-
size wafers to locate stacking faults and determine their layer of origin to identify process-
based root causes. A deep learning model and a quantification via geometric defect properties 
is realized on dark field microscope images, with the potential to be transferred to inline images 
measured in dark field mode with high-resolution cameras. We achieve detection rates up to 
92% for regular wafer surfaces. The depth analysis combines geometric properties of the 
stacking faults and measured wafer thickness and is applied on full-scale epitaxial wafers. 
Most stacking faults are confirmed to originate at the interface layer and their number is higher 
by 1-2 orders of magnitude when deposition occurs on a reorganized porous layer. However, 
our results also indicate that a non-negligible part of stacking faults has its origin within the 
epitaxial layer.  
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1. Introduction

Kerf-less wafer technologies are advantageous in terms of material cost and reduced energy 
consumption. With the objective of a large-scale production that can compete with Czochralski 
growth of silicon, it is crucial to minimize lifetime-decreasing defects like stacking faults. While 
the characterization of stacking faults and their origin on microscopic scale has already been 
research topic of phenomenological studies [1-3], in this contribution, the focus is on a full 
wafer characterization that can be integrated into the industrial process.  

Our method enables a fully automated detection of 3D stacking fault positions in highly 
resolved microscope images. Their lateral position on the wafer is identified by a segmentation 
with a deep-learning model. The third dimension is the depth of the stacking fault origin. It is 
tracked down virtually by making use of their pyramidal geometry: the (111) planes build an 
inverted pyramidal structure, see Figure 1. Combined with thickness measurements before 
and after epitaxial growth, such an information can assist in defining the layer where the stack-
ing fault originated. Accordingly, the growth of stacking faults can be mitigated by addressing 
the process-related challenges at the respective stage. 
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2. Experimental and Algorithmic Approach 

2.1 Experimental Approach 

The measurements applied for this experiment are shown in Figure 1, along with a schematic 
view of the layers in epitaxially grown silicon. The epitaxial wafers were measured via dark 
field microscopy (resolution 1.7 µm/px). An image of the whole wafer (size 
156.7 mm x 156.7 mm) is obtained by stitching 47 x 77 single rectangular images. The thick-
ness of the substrate was measured via triangulation on three traces of an inline wafer inspec-
tion system with a resolution of ~180 µm/px. The thickness of the wafer after epitaxy was 
measured in an offline tool with a spatial resolution of ~2 mm/px. The thickness data were 
interpolated (linearly) to match with the microscope data. To account for the low resolution, we 
added a tolerance to the interface thickness, which is usually between 1 and 2 µm, of which 
we assumed the upper bound 2 µm. This tolerance amounts to sum of the individual substrate 
thickness variation of the wafer (median 18.2 µm) and the combined uncertainty of the thick-
ness measurements of 1.14 µm.  

 

Figure 1. Schematic view on the layers of an epitaxially grown silicon wafer. The boxes denote the 
measurements serving as basis for our analysis: dark Field (DF) microscopy and thickness measure-

ments. 

2.2 Algorithmic Approach 

As outlined in Figure 2 b), the algorithmic approach is split into two steps: 

 Step 1: Training and application of models for stacking fault recognition: To 
achieve a semantic segmentation of stacking faults, a U-Net [4] has been trained on 243 an-
notated single microscope images. The dataset is split 80%/20% into training and validation 
set. Two classes of stacking faults are discerned: so-called “open” and “closed” stacking faults 
that are flattened pyramids, with a level only slightly elevated above the surface. They appear 
as squares with bright outlines. The second consists in full pyramids that appear as filled bright 
squares. With basic image processing, the labeled dataset was extended to be applicable to a 
more varied dataset. It includes wafers grown with different process sequences and process 
configurations on different substrate materials and thus represents a broad variety of stacking 
fault density and appearance. Preprocessing and augmentation involve an alignment and scal-
ing, rotations and further transforms regarding blurring and noise. By an inference of these 
models, a semantic segmentation of stacking faults is obtained. Stacking faults with only one 
visible side were labeled but not used for this analysis of depth calculation since the determi-
nation of the length of a single line, combined with noisy data, leads to high uncertainty. 

 Step 2: Geometric evaluation and determination of origin layer: To determine 
stacking fault size, template matching with binned sizes (between 130 - 300 µm) was applied 
on the segmentation results of Step 1. The best response yields the matched size. Figure 2 a) 
schematically shows how this relates to the depth of the stacking fault 𝑑𝑑SF:  

𝑑𝑑SF = 𝑎𝑎
√2

= tan(𝛼𝛼′) 𝑎𝑎
2
, with 𝛼𝛼 = 45°,  𝛼𝛼′ = tan−1√2 ≈ 54.7°. (1) 
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 A confidence measure is computed based on the ideal match and used as a criterion 
to remove false positives a posteriori. By subtracting the determined depth with the thickness 
of the epitaxial layer 𝑑𝑑Epi,𝑑𝑑𝐿𝐿 = 𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑑𝑑𝑆𝑆𝑆𝑆, the origin is assigned to one of three classes ac-
cording to the sign of 𝑑𝑑SF </=/> 𝑑𝑑Epi, i.e., originated in the substrate (<), at the interface (=) 
or within the epitaxial layer (>). Since our experiment was carried out before detachment, 𝑑𝑑Epi 
is determined by subtracting the substrate thickness from the overall thickness: 𝑑𝑑Epi =
𝑑𝑑Wafer − 𝑑𝑑Substrate.  

3. Results 

In Figure 3, results for different cases of detection and size matching are shown. Case A ac-
counts for at least 50% of observed stacking faults, namely separately occurring open stacking 
faults. The model performs well and robustly for this case. Size detection works well, slightly 
tending to over-estimation. Regarding successful detection, case C is similar to case A but 
regards closed stacking faults, which occur more rarely. They are labeled and successfully 
discerned as another defect class but treated in the same way for size detection. Case B shows 
different aspects of overlapping stacking faults that occur less frequently. Both, identification 
model and size detection, display restrictions in this case, the first in detecting only the more 
distinct stacking faults, the second in discarding non-square segmentation outputs.  

3.1 Detection of stacking faults 

On flat surfaces without disturbing structures, single stacking faults show a high accuracy of 
up to 92% for the microscope images. The used metric for accuracy is the intersection over 
union, short IoU with regard to pixels in labeled regions and thresholded prediction. In Figure 
3, exemplary image sections of microscope images show successful detections and re-
strictions. Case A (first and second column) represents the most common case of stacking 
fault appearance for which the detection works reliably.  

 The detection quality is found to depend strongly on the following criteria. First, the 
thickness variation of the wafer. In sloped regions of the wafer surface, stacking faults often 
appear incomplete in the measurement. While the model is mostly able to detect partially visi-
ble stacking faults, the probability of false positives or wrong size matchings is increased with 
the amount of missing information about the geometry. Second, the presence of contamina-
tions that decorate stacking faults. While the moSiliconPV Conf Proc 2 (2024) "SiliconPV 2024, 

a) b) 

Figure 2. Left: Schematic view on a stacking fault grown as inverted pyramid.  
Right: Algorithmic approach. Top, step 1: Dark-field microscope image (image section) and seg-

mentation result (same image section) obtained with a deep learning model. Bottom, Step 2: Tem-
plate matching with binned template sizes and best match. 
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14th International Conference on Crystalline Silicon Photovoltaics"del is trained to work in 
those cases, the dotted surface appearance also decreases accuracy, as shown in Figure 3 
case A, third example. With sloping surface and contaminations present, the IoU drops to about 
60%. And third, overlapping structures, in which the detection of single stacking faults becomes 
ambiguous, and the size may be mismatched or discarded, see Figure 3 case B.  

3.2 Layer of stacking fault origin 

Regarding the overall occurrence of stacking faults, wafers from groups that underwent a po-
rosification and reorganization show multiples of stacking faults compared to a reference with-
out porous interface layer. For all wafers, the depth origin of the detected stacking faults was 
mostly near the interface between substrate and deposited layer. Additionally, a minor number 
of origins are indicated within the epitaxial layer.  

 

Figure 3. Image matrix showing image sections from original microscope images (top row), segmenta-
tion results (middle row) and the best match resulting from template matching, shown as red bounding 
boxes. A, B and C stand for different types of stacking fault occurrence and appearance: (A) separate 

open stacking faults (>50%), (B) regions with overlapping stacking faults and (C) closed stacking 
faults. 

 

Figure 4. Histograms showing the origin layer of detected stacking faults as determined from stacking 
fault depth, following our algorithmic steps, and adjusting the depth with wafer thickness measure-
ments. The total thickness variation of the substrate is added as tolerance to the interface layer.  
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4. Discussion 

4.1 Suitability of the algorithmic approach 

The exemplary image sections in Figure 3 show that the appearance of stacking faults can 
vary according to the wafer surface and presence of contaminations. Not all sides of the stack-
ing faults are always visible. From the visual results, we can conclude that the segmentation 
results are indeed robust regarding those variations. In the case of overlapping regions, the 
recall is reduced, yet the algorithmic results still indicate a locally increased stacking fault den-
sity within those regions, and the depth information is valid regardless. In this work, stacking 
faults are left out of which only one side is visible. Those would have to be considered to 
assess material quality, yet for a reliable size determination, one line is too error prone. That 
means that in our results, the total number of stacking faults is underestimated.  

 Regarding the reliability of the determined layer of origin, the adjustment with wafer 
thickness measurements introduces uncertainties, first from the measurements (~1 µm) and 
second from using only three lines of inline thickness measurements on the substrate. We 
account for this by adding a tolerance of the measurement uncertainty plus the total thickness 
variation of the specific substrate (median 18.2 µm) as a tolerance in the depth dimension.  

4.2 Probable root causes for stacking fault origins 

With regard to the layer of origin in the use-cases, the results confirm the finding that most 
stacking faults originate between substrate and deposited layer, mostly at the reorganized po-
rous layer, e.g. via incompletely closed pores or stress and resulting dislocations [2]. Yet, our 
results suggest that new stacking faults have formed within the epitaxial layer. Origins of stack-
ing faults can be induced by contaminations, stress in general (causing dislocations) and the 
formation of twinned grains at atomic steps that could lead to the formation of new stacking 
faults [5]. Such origins of formation can occur at the growth front during epitaxial growth. 

5. Conclusions and outlook 

In this work, we present a non-destructive and fully automated characterization method to de-
tect the position and layer origin of stacking faults on full-size wafers grown with an epitaxial 
process. The position of the stacking faults is identified based on dark-field microscope images 
and a convolutional neural network. Their depth is derived from the stacking fault size via the 
well-known geometry of these defects. Combined with wafer thickness measurements, the 
layer of origin can be determined. The model obtained with deep learning successfully detects 
most of the stacking faults and the detected size is in accordance with visual appearance ex-
cept for regions with larger image noise or higher thickness variation. Our method works relia-
bly, especially for samples with homogeneous surface. The relatively large tolerance regarding 
the interface depth is a restriction to our method that must be addressed in the future, for 
example by a characterization on detached wafers. 

 The model was applied on images of full wafers (with a side length of 156.7 mm), cor-
responding to more than 3000 single dark field microscope images per wafer with a resolution 
of 1.7 µm / px. The main layer of stacking fault origins is confirmed to be the interface, i.e., the 
layer on which the deposition takes place. The number of stacking faults is significantly lower 
if the deposition takes place on the substrate, compared to a reorganized porous layer. This 
can be attributed to agglomerated vacancies and increased stress and resulting dislocations. 
At the same time, our results strongly suggest further origins within the epitaxial layer. A trans-
fer of the method to inline wafer measurements can provide an extended dataset for further 
investigations on new data obtained on samples from a novel industrial process. 
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