Simulating Traffic Networks
Driving SUMO Towards Digital Twins
DOI:
https://doi.org/10.52825/scp.v5i.1105Keywords:
Digital Twin, SUMO (Simulation of Urban Mobility), Intermodal Mobility Networks, Sustainable Urban Planning, Traffic SimulationAbstract
For driving the roads of cities into enjoyable and relaxing places with parks, trees, and seating, a paradigm change in everyone’s commuter behavior is needed. Still, individual transport via cars increases, and thus, the space required for parking and driving these cars shapes our cities — not the people. Next to the space needed, vehicles pollute the environment with CO2, diesel particulate, and even electric cars with tire abrasion. Alternative modes of locomotion, like public transportation and shared mobility, are still not attractive to many people. Intelligent intermodal mobility networks can help address these challenges, allowing for efficient use between various transportation modalities. These mobility networks require good databases and simulation combined into digital twins. This paper presents how such a digital twin can be created in the Simulation of Urban Mobility (SUMO) software using data from available and future city sensors. The digital twin aims to simulate, analyze, and evaluate the different behaviors and interactions between traffic participants when changing commuting incentives. Using the city of Osnabrück and its different available sensor types, the data availability is compared with other towns to discuss how the data density can be improved. Creating a static network from open street data and intersection side maps provided by the city of Osnabrück shows how these data can be integrated into SUMO for generating traffic flows and routes in SUMO based on a database of historical and live data. Within the conclusion, the paper discusses how developing a digital twin in SUMO from static and dynamic data can be improved in the future and what common misconceptions need to be overcome.
Downloads
References
D. Shoup, High cost of free parking. Abingdon-on-Thames, UK: Routledge, 2021. DOI: https://doi.org/10.4324/9781351179539.
eurostat, “Passenger mobility statistics,” Nov. 2021, [Online; accessed 16. Feb. 2024], ISSN: 2443-8219. [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=479608.
J. Scudellari, L. Staricco, and E. Vitale Brovarone, “Implementing the supermanzana approach in Barcelona. Critical issues at local and urban level,” Journal of Urban Design, vol. 25, no. 6, pp. 675–696, 2020. DOI: https://doi.org/10.1080/13574809.2019.1625706.
S. Dorokhin, A. Artemov, D. Likhachev, A. Novikov, and E. Starkov, “Traffic simulation: An analytical review,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 918, 2020, p. 012 058. DOI: https://doi.org/10.1088/1757-899X/918/1/012058.
X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, and B. Yin, “Deep learning on traffic prediction: Methods, analysis, and future directions,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4927–4943, 2022. DOI: https://doi.org/10.1109/TITS.2021.3054840.
H. Nguyen, L.-M. Kieu, T. Wen, and C. Cai, “Deep learning methods in transportation domain: A review,” IET Intelligent Transport Systems, vol. 12, no. 9, pp. 998–1004, 2018. DOI: https://doi.org/10.1049/iet-its.2018.0064.
I. Laña, J. Del Ser, M. Velez, and E. I. Vlahogianni, “Road traffic forecasting: Recent advances and new challenges,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 4, pp. 28–41, 2018. DOI: https://doi.org/10.1109/MITS.2018.2806634.
K.-H. N. Bui, J. Cho, and H. Yi, “Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues,” Applied Intelligence, vol. 52, pp. 2763–2774, 2021. DOI: https://doi.org/10.1007/s10489-021-02587-w.
W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A survey,” Expert Systems with Applications, vol. 207, p. 117 921, 2022. DOI: https://doi.org/10.1016/j.eswa.2022.117921.
M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic flow forecasting,” in Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI Press, 2021, pp. 4189–4196. DOI: https://doi.org/10.1609/aaai.v35i5.16542.
I. Trautwein, A. Freymann, E. Reichsoellner, J. S. Kraus, and T. Schrodi, “A Technical Concept for sensor-based Traffic Flow Optimization on connected real-world intersections via a SUMO Feature Gap Analysis,” SUMO Conference Proceedings, vol. 4, Jun. 2023, ISSN: 2750-4425. DOI: https://doi.org/10.52825/scp.v4i.218.
E. Reichsöllner, A. Freymann, M. Sonntag, and I. Trautwein, “SUMO4AV: An Environment to Simulate Scenarios for Shared Autonomous Vehicle Fleets with SUMO Based on OpenStreetMap Data,” SUMO Conference Proceedings, vol. 3, pp. 83–94, Sep. 2022, ISSN: 2750-4425. DOI: https://doi.org/10.52825/scp.v3i.113.
A. Keler, W. Sun, and J.-D. Schmöcker, “Generating and Calibrating a Microscopic Traffic Flow Simulation Network of Kyoto: First Insights from Simulating Private and Public Transport,” SUMO Conference Proceedings, vol. 4, Jun. 2023, ISSN: 2750-4425. DOI: https://doi.org/10.52825/scp.v4i.226.
M. R. Ullah, K. S. Khattak, Z. H. Khan, M. A. Khan, N. Minallah, and A. N. Khan, “Vehicular traffic simulation software: A systematic comparative analysis,” Pakistan Journal of Engineering and Technology, vol. 4, no. 1, pp. 66–78, 2021. DOI: https://doi.org/10.51846/vol4iss1pp66-78.
T. Alghamdi, S. Mostafi, G. Abdelkader, and K. Elgazzar, “A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior,” Future Internet, vol. 14, no. 10, p. 294, Oct. 2022, ISSN: 1999-5903. DOI: https://doi.org/10.3390/fi14100294.
P. Alvarez Lopez, M. Behrisch, L. Bieker-Walz, et al., “Microscopic traffic simulation using sumo,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, Nov. 2018, pp. 2575–2582. DOI: https://doi.org/10.1109/ITSC.2018.8569938.
A. Keler, A. Kunz, S. Amini, and K. Bogenberger, “Calibration of a Microscopic Traffic Simulation in an Urban Scenario Using Loop Detector Data: A Case Study within the Digital Twin Munich,” SUMO Conference Proceedings, vol. 4, Jun. 2023, ISSN: 2750- 4425. DOI: https://doi.org/10.52825/scp.v4i.223.
DIN SPEC 91357: Referenzarchitekturmodell Offene Urbane Plattform (OUP), Deutsches Institut für Normung (DIN), 2017-12.
LK Argus Kassel GmbH, “Luftreinhalte- und Aktionsplan Stadt Osnabrück 2008, 2. Aktualisierung 2017,” Stadt Osnabrück, Fachbereich Umwelt und Klimaschutz, Tech. Rep., 2018. [Online]. Available: https://nachhaltig.osnabrueck.de/fileadmin/nachhaltig/Dokumente/LRP_Osnabrueck_Aktualisierung_2017_Bericht_Nov2018.pdf.
Stadt Osnabrück, Autobahnumleitungen (BAB-Umleitungen) in der Stadt Osnabrück, 2014. [Online]. Available: https://geoportal.geodaten.niedersachsen.de/harvest/ srv/api/records/4826693c-336c-4488-bbc7-776fa7fb01b6.
Zentrale Unterstützungsstelle – Luftreinhaltung, Lärm und Gefahrstoffe, “Modellgestützte Voruntersuchungen zur Fortschreibung des Luftreinhalteplanes im Rahmen der NO2- Notifizierung,” Staatliches Gewerbeaufsichtsamt Hildesheim, Tech. Rep., 2015. [Online]. Available: https://www.umwelt.niedersachsen.de/download/7280/Modellgestuetzte _ Voruntersuchungen_zur_Fortschreibung_des_Luftreinhalteplanes_im_Rahmen_der_NO2-Notifizierung_Sept._2011.pdf.
QGIS Development Team, Qgis geographic information system, Open Source Geospatial Foundation, 2009. [Online]. Available: http://qgis.org.
Begriffsbestimmungen – Teil: Verkehrsplanung, Straßenentwurf und Straßenbetrieb, Forschungsgesellschaft für Straßen- und Verkehrswesen e. V. (FGSV), 2012.
M. Treiber and A. Kesting, Traffic Flow Dynamics. Berlin, Germany: Springer, 2013, ISBN: 978-3-642-32460-4. DOI: https://doi.org/10.1007/978-3-642-32460-4.
A. Schaffland and G. Heidemann, “Heritage and repeat photography: Techniques, management, applications, and publications,” Heritage, vol. 5, no. 4, pp. 4267–4305, 2022. DOI: https://doi.org/10.3390/heritage5040220.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Axel Schaffland, Jonas Nelson, Julius Schöning
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Accepted 2024-04-03
Published 2024-07-17
Funding data
-
Bundesministerium für Bildung und Forschung
Grant numbers 16KISA120