On Vehicular Data Aggregation in Federated Learning
A Case Study of Privacy with Parking Occupancy in Eclipse SUMO
DOI:
https://doi.org/10.52825/scp.v5i.1100Keywords:
Vehicular Federated Learning, Location Privacy, Deep Leakage From GradientsAbstract
Vehicular federated learning systems will be beneficial to predicting traffic events in future intelligent cities. However, they might leak private information upon model updates. Hence, an honest but curious server could infer private information, such as the route of a vehicle. In this study, we elaborate on the nature of such privacy leakage caused by gradient sharing. With a simulated scenario, we focus on determining who is in danger of privacy threats and how successful a route inference attack can be.
Results indicate that vanilla federated learning exposes intra-city and commuter traffic to successful location inference attacks. We also found that an adversarial aggregator server successfully infers the moving time of vehicles traveling during low-traffic periods.
Downloads
References
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, “Communication- efficient learning of deep networks from decentralized data,” in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54, PMLR, 20–22 Apr 2017, pp. 1273–1282.
L. Alekszejenkó and T. Dobrowiecki, “SUMO simulations for federated learning in communicating autonomous vehicles: A survey on efficiency and security,” SUMO Conference Proceedings, vol. 4, pp. 115–129, Jun. 2023. DOI: https://doi.org/10.52825/scp.v4i.221.
P. A. Lopez, M. Behrisch, L. Bieker-Walz, et al., “Microscopic traffic simulation using SUMO,” in The 21st IEEE International Conference on Intelligent Transportation Systems, IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/.
F. Caicedo, “The use of space availability information in “parc” systems to reduce search times in parking facilities,” Transportation Research Part C: Emerging Technologies, vol. 17, no. 1, pp. 56–68, 2009, ISSN: 0968-090X. DOI: https://doi.org/10.1016/j.trc.2008.07.001.
L. Codecá, J. Erdmann, and J. Härri, “A SUMO-based parking management framework for large-scale smart cities simulations,” in 2018 IEEE Vehicular Networking Conference (VNC), 2018, pp. 1–8. DOI: https://doi.org/10.1109/VNC.2018.8628417.
F. Schaub, Z. Ma, and F. Kargl, “Privacy requirements in vehicular communication systems,” in 2009 International Conference on Computational Science and Engineering, vol. 3, 2009, pp. 139–145. DOI: https://doi.org/10.1109/CSE.2009.135.
Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji, and J. Li, “Federated learning for vehicular internet of things: Recent advances and open issues,” IEEE Open Journal of the Computer Society, vol. 1, pp. 45–61, 2020. DOI: https://doi.org/10.1109/OJCS.2020.2992630.
X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions,” ACM Comput. Surv., vol. 54, no. 6, Jul. 2021, ISSN: 0360-0300. DOI: https://doi.org/10.1145/3460427.
L. Zhu, Z. Liu, and S. Han, Deep leakage from gradients, 2019. arXiv: 1906.08935 [cs.LG].
N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and E. Martínez- Cámara, “Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges,” Information Fusion, vol. 90, pp. 148–173, 2023, ISSN: 1566-2535. DOI: https://doi.org/10.1016/j.inffus.2022.09.011.
F. Schröter. “Planzeichenverordnung 1990 - PlanzV 90.” (in German). (Nov. 2017), [Online]. Available: https://www.dr-frank-schroeter.de/planzv.htm (visited on01/31/2024).
Eurostat. “Demography of Europe 2023: 2023 interactive edition.” (2023), [Online]. Available: https://ec.europa.eu/eurostat/web/interactive-publications/demography-2023 (visited on 02/01/2024).
E. Moradi-Pari, D. Tian, M. Bahramgiri, S. Rajab, and S. Bai, “DSRC versus LTE-V2X: Empirical performance analysis of direct vehicular communication technologies,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 5, pp. 4889–4903, 2023. DOI: https://doi.org/10.1109/TITS.2023.3247339.
S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129–137, 1982. DOI: https://doi.org/10.1109/TIT.1982.1056489.
L. Codecá and J. Härri, “Monaco SUMO traffic (MoST) scenario: A 3D mobility scenario for cooperative ITS,” in SUMO 2018, SUMO User Conference, Simulating Autonomous and Intermodal Transport Systems, May 14-16, 2018, Berlin, Germany, Berlin, Germany, May 2018.
J. Day and H. Zimmermann, “The OSI reference model,” Proceedings of the IEEE, vol. 71, no. 12, pp. 1334–1340, 1983. DOI: https://doi.org/10.1109/PROC.1983.12775.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Levente Alekszejenkó, Tadeusz Dobrowiecki
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Accepted 2024-04-03
Published 2024-07-17
Funding data
-
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Grant numbers ÚNKP-23-3-II-BME-233 -
Hungarian Scientific Research Fund
Grant numbers 139330 -
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Grant numbers TKP2021-EGA-02 -
Mesterséges Intelligencia Nemzeti Laboratórium
Grant numbers RRF-2.3.1-21-2022-00004