rescuePY: Simulation-Based Rescue Response Impact Assessment
DOI:
https://doi.org/10.52825/scp.v5i.1029Keywords:
Simulation, Emergency Service, Mobility ChangesAbstract
Mobility in metropolitan regions is changing. The distribution of space in cities, the design of transport modes, and the organization of mobility are being re-thought. However, no matter the changes and innovations on the way to a more sustainable future, essential constants must be upheld: In the event of minor, regionally limited emergencies, medical assistance must reach those in need quickly. When dealing with large-scale emergencies, the ability to evacuate the area promptly must be ensured. The impact analysis of mobility innovations on emergency services within urban areas so far has been based purely on empirical observations using existing data. Currently, it is only possible to analyze what-if considerations in a limited way. Nevertheless, due to the increasingly rapid changes in mobility, a comprehensive and interlinked analysis will be necessary. This is the key contribution of rescuePY: rescuePY is a simulation suite based on the mesoscopic and microscopic simulation environment hybridPY. It allows holistic and microscopic transport modeling of rescue infrastructure to quantify the impact of the mobility transition towards higher sustainability on the performance of rescue services.
The main features of this software are:
- Rescue system assessment for strategic, long-term planning
- Mobility-influence studies for operative, mid-term planning
- Activity-based urban evacuation modeling
The capabilities of rescuePY are demonstrated by two applications: a simulation- based, mesoscopic system analysis of emergency services in Munich compared to real-world data and microscopic modeling of emergency vehicles (EMVs) in different road architectures. Ongoing developments aim to improve the evaluation methodology for the aggregated impact analysis of mobility innovations on rescue response services.
Downloads
References
M. Müllender. “Radentscheid: Fehlt der Mut zur Verkehrswende?” (1/25/2024), [Online]. Available: https://www.mucbook.de/radentscheid-mut-verkehrswende/ (visited on 02/05/2024).
Lukas Ballo, Lucas Meyer de Freitas, Adrian Meister, and Kay W. Axhausen, “The e-bike city as a radical shift toward zero-emission transport: Sustainable? equitable? desirable?” Journal of Transport Geography, vol. 111, p. 103 663, 2023, ISSN: 0966-6923. DOI: 10.1016/j.jtrangeo.2023.103663. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0966692323001357.
Ltd. BD Dipl.-Ing. (FH) Peter Bachmeier, Fachempfehlung der Arbeitsgemeinschaft der Leiterinnen und Leiter der Berufsfeuerwehren und des deutschen Feuerwehrverbandes Mobilitätswende, Fachausschuss Vorbeugender Brand- und Gefahrenschutz, Ed., 2022. [Online]. Available: https://www.feuerwehr-frankfurt.de/mediathek/fachempfehlung-mobilitaetswende/download.
Institut für Notfallmedizin und Medizinmanagement, Ed., Rettungsdienstbericht Bayern 2023, 2023. [Online]. Available: https://www.inm-online.de/images/stories/pdf/RD_BERICHT_2023.pdf.
Bundesamt für Bevölkerungsschutz BABS, Ed., Die Planung von kleineren Evakuierungen: Planungsgrundlage Evakuierung, 2011. [Online]. Available: https://www.babs.admin.ch/content/babs-internet/de/publikservice/downloads/unterlagen-ereignisbewaeltigung/jcrcontent/contentPar/accordion/accordionItems/evakuierung/accordionPar/downloadlist/downloadItems/259_ 467963837511.download/broschuereevak-de.pdf.
Feuerwehr Frankfurt am Main, Verkehr und Mobilitätswende. [Online]. Available: https://www.feuerwehr-frankfurt.de/service/vorbeugender-brandschutz/verkehr.
Koch Zade, Yuan Matthew, and Bristow Elizabeth, “Emergency response after disaster strikes: Agent-based simulation of ambulances in New Windsor, NY,” Journal of Infrastructure Systems, vol. 26, no. 3, p. 06 020 001, 2020. DOI: 10.1061/(ASCE)IS.1943- 555X.0000565.
E. Yaneza, “The Philippines: Agent-based transport simulation model for disaster response vehicles,” in 2016, pp. 461–468, ISBN: 9781909188754. DOI: https://doi.org/10.5334/baw.78.
Filippo Muzzini, Improving emergency response in the era of adas vehicles in the smart city. [Online]. Available: https://www.wevolver.com/article/improving-emergency-response-in-the-era-of-adas-vehicles-in-the-smart-city.
Nicola Capodieci, Roberto Cavicchioli, Filippo Muzzini, and Leonard Montagna, “Improving emergency response in the era of adas vehicles in the smart city,” ICT Express, vol. 7, no. 4, pp. 481–486, 2021, ISSN: 2405-9595. DOI: https://doi.org/10.1016/j. icte.2021.03.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405959521000382.
T. Li, W. Zhao, C. Baumanis, J. Hall, and R. Machemehl, “A python extension in sumo for simulating traffic incidents and emergency service vehicles,” in Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022, R. Gupta, M. Sun, S. Brzev, et al., Eds., Cham: Springer Nature Switzerland, 2024, pp. 527–539, ISBN: 978-3- 031-34027-7.
Computer simulation system cis-kosmas. [Online]. Available: https://albrus-ssv.narod.ru/e_kosmas.htm.
J. So, J. Kang, S. Park, I. Park, and J. Lee, “Automated Emergency Vehicle Control Strategy Based on Automated Driving Controls,” Journal of Advanced Transportation, vol. 2020, pp. 1–11, 2020, ISSN: 0197-6729. DOI: https://doi.org/10.1155/2020/3867921.
A. Louati, H. Louati, M. Nusir, and B. Hardjono, “Multi-agent deep neural networks coupled with LQF-MWM algorithm for traffic control and emergency vehicles guidance,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 11, pp. 5611–5627, 2020, ISSN: 1868-5137. DOI: https://doi.org/10.1007/s12652-020-01921-3.
S. Schmidt. “Forschungsprojekt SIRENE: Grüne Welle fu¨ r Rettungsfahrzeuge.” (2021- 08-02), [Online]. Available: https://blog.ptvgroup.com/de/stadt-und-mobilitaet/gruene-welle-fuer-rettungsfahrzeuge/ (visited on 02/11/2023).
L. Bieker-Walz, “Verkehrsmanagement für Einsatzfahrzeuge,” Technische Universität Berlin, Berlin, 2021. DOI: https://doi.org/10.14279/depositonce-12150.
M. Humayun, M. F. Almufareh, and N. Z. Jhanjhi, “Autonomous Traffic System for Emergency Vehicles,” Electronics, vol. 11, no. 4, p. 510, 2022. DOI: https://doi.org/10.3390/electronics11040510.
G. Oosterbos, “Simulation of Emergency Vehicles in Connected and Autonomous Traffic,” Technische Universiteit Eindhoven, Einhoven, 2023.
C. E. Corte´s and B. Stefoni, “Trajectory Simulation of Emergency Vehicles and Interactions with Surrounding Traffic,” Journal of Advanced Transportation, vol. 2023, pp. 1–23, 2023, ISSN: 0197-6729. DOI: https://doi.org/10.1155/2023/5995950.
H. Shoaraee, L. Chen, and F. Jiang, “Decision-Making of an Autonomous Vehicle when Approached by an Emergency Vehicle using Deep Reinforcement Learning,” in 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), (AB, Canada), IEEE, 2021, pp. 185–191, ISBN: 978-1-6654-2174-4. DOI: https://doi.org/10.1109/DASC- PICom-CBDCom-CyberSciTech52372.2021.00041.
A. Muhammad, R. Risi, F. Luca, et al., “Agent-based modelling of existing tsunami evacuation plan in Kuroshio town, Kochi, Japan,” 2020.
A. Fathianpour, B. Evans, M. B. Jelodar, and S. Wilkinson, “Tsunami evacuation modelling via micro-simulation model,” en, Prog. Disaster Sci., vol. 17, no. 100277, p. 100 277, 2023.
G. Lämmel, M. Chraibi, A. U. K. Wagoum, and B. Steffen, “Hybrid multimodal and inter- modal transport simulation: Case study on large-scale evacuation planning,” en, Transp. Res. Rec., vol. 2561, no. 1, pp. 1–8, 2016.
Y.-P. Flötteröd and J. Erdmann, “Dynamic reroute modeling for emergency evacuation: Case study of the Brunswick city,” 2018.
K. Mls, M. Kořínek, K. Štekerová, et al., “Correction to: Agent-based models of human response to natural hazards: Systematic review of tsunami evacuation,” en, Nat. Hazards (Dordr.), vol. 117, no. 2, pp. 2111–2112, 2023.
P. Murray-Tuite and B. Wolshon, “Evacuation transportation modeling: An overview of research, development, and practice,” en, Transp. Res. Part C Emerg. Technol., vol. 27, pp. 25–45, 2013.
A. J. Pel, M. C. J. Bliemer, and S. P. Hoogendoorn, “A review on travel behaviour modelling in dynamic traffic simulation models for evacuations,” en, Transportation (Amst.), vol. 39, no. 1, pp. 97–123, 2012.
L. Filippidis, P. Lawrence, V. Pellacini, A. Veeraswamy, D. Blackshields, and E. Galea, “Multimodal wildfire evacuation at the microscopic level,” 2020.
P. Lawrence, V. Pellacini, and E. Galea, “The modelling of pedestrian vehicle interaction for post-exiting behaviour,” 2018.
A. Veeraswamy, E. R. Galea, L. Filippidis, et al., “The simulation of urban-scale evacuation scenarios with application to the swinley forest fire,” en, Saf. Sci., vol. 102, pp. 178– 193, 2018.
Y. Chen, S. Y. Shafi, and Y.-F. Chen, “Simulation pipeline for traffic evacuation in urban areas and emergency traffic management policy improvements through case studies,” en, Transp. Res. Interdiscip. Perspect., vol. 7, no. 100210, p. 100 210, 2020.
K. Xie, K. Ozbay, Y. Zhu, and H. Yang, “Evacuation zone modeling under climate change: A data-driven method,” en, J. Infrastruct. Syst., vol. 23, no. 4, p. 04 017 013, 2017.
Yu Chen, S. Yusef Shafi, and Yi-fan Chen, “Simulation pipeline for traffic evacuation in urban areas and emergency traffic management policy improvements through case studies,” Transportation Research Interdisciplinary Perspectives, vol. 7, p. 100 210, 2020, ISSN: 2590-1982. DOI: 10.1016/j.trip.2020.100210. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590198220301214.
M. Sichani, K. Bubendorfer, and R. Arnold, “Traffic, earthquakes and evacuations : A data driven multi-disciplinary simulation framework,” in 2021 IEEE 17th International Conference on eScience (eScience), 2021, pp. 50–59. DOI: https://doi.org/10.1109/eScience51609.2021. 00015.
J. Schweizer, F. Rupi, F. Filippi, and C. Poliziani, “Generating activity based, multi-modal travel demand for sumo,” EPiC Series in engineering, vol. 2, pp. 118–133, 2018.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Fabian Schuhmann, Maximilian Sievers, Stefan Schrott, Ivan Kapovich, Lijie Feng, Markus Lienkamp
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Accepted 2024-04-03
Published 2024-07-17