
Extending the Intelligent Driver Model in SUMO 
and Verifying the Drive Off Trajectories 

with Aerial Measurements 
Dominik Salles1, Stefan Kaufmann2 and Hans-Christian Reuss3 

1 Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), Germany
 2 IT-Designers GmbH, Esslingen, Germany 

3 University of Stuttgart – Institute of Automotive Engineering (IFS), Germany  
dominik.salles@fkfs.de 

Abstract 
Connected and automated driving functions are key components for future vehicles. Due to 

implementation issues and missing infrastructure, the impact of connected and automated vehicles 
on the traffic flow can only be evaluated in accurate simulations. Simulation of Urban Mobility 
(SUMO) provides necessary and appropriate models and tools. SUMO contains many car-following 
models that replicate automated driving, but cannot realistically imitate human driving behavior. 
When simulating queued vehicles driving off, existing car-following models are neither able to 
correctly emulate the acceleration behavior of human drivers nor the resulting vehicle gaps. Thus, we 
propose a time-discrete 2D Human Driver Model to replicate realistic trajectories. We start by 
combining previously published extensions of the Intelligent Driver Model (IDM) to one generalized 
model. Discontinuities due to introduced reaction times, estimation errors and lane changes are 
conquered with new approaches and equations. Above all, the start-up procedure receives more 
attention than in existing papers. We also provide a first evaluation of the advanced car-
following model using 30 minutes of an aerial measurement. This dataset contains three hours 
of drone recordings from two signalized intersections in Stuttgart, Germany. The method designed 
for extracting the vehicle trajectories from the raw video data is outlined. Furthermore, we evaluate 
the accuracy of the trajectories obtained by the aerial measurement using a specially equipped vehicle. 

1 Introduction 
In the last few decades, many traffic simulation software packages have been developed to study 

traffic flow and movement patterns of pedestrians. Multiple reviews regarding performance, usability 
and portability of the programs SUMO (Lopez et al. 2018), PTV Vissim, Aimsun, Paramics, MATSim, 
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CORSIM and TRANSIM have been published in Kotusevski and Hawick (2009), Ejercito et al. (2017) 
and Dallmeyer (2014). SUMO’s ability to handle large networks and its open source framework make 
it attractive for researchers. The source code, written in C++, can be fully examined and modified. This 
creates a foundation for integrating custom car-following models and devices. Another notable add-on 
is the “Traffic Control Interface” (TraCI) (Wegener et al. 2008), which enables the communication with 
SUMO via the Transmission Control Protocol (TCP). 

Simulation studies and modifications utilizing SUMO are often related to connected and 
autonomous driving functions. VSimRTI (Queck et al. 2008) and Veins (Sommer et al. 2008) are two 
exemplary communication tools, which use TraCI to connect the traffic simulation SUMO with network 
simulators (NS2/NS3 or OMNET++), so that real-world network protocols and V2V communication 
can be developed and tested. A multitude of researchers have carried out investigations of how 
connected and autonomous driving will change the road capacity and future traffic flow, by using 
custom programmed devices and extensions, such as the Adaptive Cruise Control (ACC) and 
Cooperative Adaptive Cruise Control (CACC) models (Milanés and Shladover 2014; Xiao et al. 2017; 
Xiao et al. 2018). Among them, Alekszejenkó and Dobrowiecki (2019) present an intelligent traffic 
control algorithm coupled with platooning vehicles developed in SUMO to improve urban traffic flow. 
They point out that future work would need to analyze the impact of human drivers in the scenario to 
better quantify the improvements. Richter et al. (2019) actually study the effect of mixed traffic 
(autonomous vehicles and human drivers) on a highway. They use the Krauss model (Krauss et al. 
1997) and define smaller time headways, reaction times and sigma values (driver imperfection) for 
autonomous vehicles. 

Other studies in this field, e.g., Derbel et al. (2012) and Zhou et al. (2016), use the IDM to represent 
the automated vehicles. They show that the original IDM is particularly well equipped to replicate 
automated driving, while the human driving behavior is either simulated using the Two Velocity 
Difference Model (Derbel et al. 2012) or the Full Velocity Difference Model (Zhou et al. 2016).  

SUMO is also often used for extracting realistic trajectories and their characteristic values. The 
trajectories are then used to retrieve typical driving cycles to calculate the energy consumption of 
vehicles (Macedo et al. 2013; Pfeil 2019; Donateo et al. 2010). These studies use SUMO to incorporate 
the effect of infrastructure and traffic dynamics on the consumption. Grumert et al. (2015) and Erdağı 
et al. (2019) go one step further, not merely focusing on the energy used, but also taking the emissions 
into account. The Krauss model was used for these investigations, which result in realistic velocities 
and traffic flow, but may produce unrealistic accelerations and therefore emissions. When using 
macroscopic values in combination with, e.g., the Handbook Emission Factors for Road Transport 
(HBEFA), the calculated values can be fairly accurate, but when extracting single trajectories, the 
results can highly depend on the acceleration. For this reason, a car-following model is needed that can 
produce realistic accelerations and jerks. 

2 Related Work 
According to the thorough review in Saifuzzaman and Zheng (2014), car-following models can be 

categorized as follows: safety distance models, Cellular Automata, Optimal Velocity Models, desired 
measures models, Gazis-Herman-Rothery models and their extensions as well as models based on the 
human perspective. The last category contains models with perception thresholds, models based on risk-
taking of the driver or driving by visual angle. Enhancements include fuzzy logic, distraction and driver 
errors.  

Safety distance models are designed to always provide a safe distance and prevent collisions. In the 
Gipps model (Gipps 1981), this is achieved without considering the speed of the respective vehicle. The 
virtual driver intends to always brake with parameter b, expecting the leader to decelerate with the 

Salles et al. |  SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

2



They include: 

 Change of speed limits
 Reaction times, light signals and priorities at junctions before drive off
 Reaction times before braking
 Greater gaps after lane changes
 Smaller gaps after lane changes
 Driving behavior near the minimal gap
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identical value. In heterogeneous traffic, this can result in collisions. When the braking parameter b of 
the leader is assumed to be higher, unrealistically large gaps form between the vehicles. 

Optimal Velocity Models (OVM), originally developed by Bando et al. (1995), use a different 
approach. They employ a constant sensitivity coefficient to describe the reactivity of the driver. The 
model, however, is not free of collisions, and when the coefficient is selected to avoid accidents, it 
induces high accelerations and decelerations. Continuing developments led to the Generalized Force 
Model (Treiber et al. 2000) and the Full Velocity Difference Model (FVDM) (Jiang et al. 2001). In 
contrast to the OVM, the FVDM takes the velocity of the leader into account and, thus, stabilizes the 
model. 

Human drivers do not react to every single change of the environment. Wiedemann incorporated 
this observation into his psycho-physical model (Wiedemann 1974). The model features perception 
thresholds, which are only exceeded when the variables change significantly. In addition, The model 
differentiates between four different driving modes, Free driving, approaching, following and strong 
braking, and it has many more functions and parameters than other car-following models. 

In contrast, Cellular Automata (CA) and the Krauss model are much less detailed. Cellular Automata 
as car-following models were first introduced by Nagel and Schreckenberg (1992). They operate in a 
time- and space-discrete fashion. The road is therefore divided into equally large cells that can only be 
occupied by one vehicle at a time. The vehicle’s speed is randomized to produce stochastic behavior. 
Despite its simple nature, this model can realistically reproduce traffic phenomena. The Krauss model, 
the default car-following model in SUMO (Krauss et al. 1997), can be considered a space-continuous 
version of the Nagel and Schreckenberg model. It combines the advantages of the CA model with those 
of the Gipps model. The Krauss model operates collision-free and contains only a few functions and 
parameters. Additional advantages are the asymmetrical acceleration-deceleration behavior and the 
emulation of the human reaction time with the simulation step time. Therefore, this model can well 
replicate many observed traffic phenomena (Alazzawi et al. 2018), despite producing unrealistic 
acceleration and jerk patterns. 

This research article focuses mainly on the realistic representation of human acceleration patterns 
using car-following models. The selected integration scheme has a significant influence on this 
representation. As pointed out by Treiber and Kanagaraj (2015), the ballistic update is always more 
accurate than the Euler method or faster with the same accuracy. In SUMO, you can choose either one. 
Due to discontinuities, such as lane changes, the standard fourth-order Runga-Kutta method is not 
applicable for multi-lane traffic simulations. Therefore, car-following models like the OVM, FVDM, 
GHR and IDM have to be described in a time-discrete fashion, although they were all developed as 
time-continuous models. In this study, the Euler method was used, as it is the default integration scheme 
in SUMO. 

The original IDM produces realistic accelerations and jerks almost independently of the integration 
method and has been continuously modified since its introduction. Shortly thereafter, Treiber and 
Helbing (2004) concluded that human drivers leave larger gaps when driving off than the IDM predicts, 
although the jerk remains realistically small in all driving situations. It should not exceed 1.5 m/s3 
(Treiber and Kesting 2013b). To achieve this goal, all discontinuities that can occur in SUMO’s traffic 
simulation must be taken into account. 
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3.1 Improved Intelligent Driver Model 
The IDM, first introduced as a time-continuous model (Treiber et al. 2000), consists of two main 

equations and five parameters, the desired time headway 𝑇, the maximum acceleration 𝑎𝑚𝑎𝑥 , the desired
deceleration 𝑏, the minimum gap 𝑠0 and the acceleration exponent 𝛿. The desired gap

𝑠𝑛−1
∗ (𝑡) = 𝑠0 + 𝑚𝑎𝑥 (0, 𝑣𝑛−1(𝑡) ∗ 𝑇 −

𝑣𝑛−1(𝑡) ∗ (𝑣𝑛(𝑡) − 𝑣𝑛−1(𝑡))

2 ∗ √𝑎𝑚𝑎𝑥 ∗ 𝑏
) (1) 

depends on three of those parameters and the velocities 𝑣𝑛(𝑡) and 𝑣𝑛−1(𝑡). The acceleration

𝑎𝐼𝐷𝑀(𝑡 + ∆𝑡) = 𝑎𝑚𝑎𝑥 [1 − (
𝑣𝑛−1(𝑡)

𝑣0(𝑡)
)

𝛿

− (
𝑠𝑛−1

∗ (𝑡)

𝑠(𝑡)
)

2

] (2) 

Figure 1: Notation of the car-following model 

𝑣𝑛(𝑡)𝑣𝑛−1(𝑡)

𝛿, 𝑇, 𝑏, 𝑎𝑚𝑎𝑥, 𝑠0

s(𝑡) 

𝑣0(𝑡)

Salles et al. |  SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

The Extended Intelligent Driver Model (EIDM) is introduced in the following section. Chapter 4 
presents the case study and aerial measurement method. Similar databases to the here presented 
measurement method have recently been released and published by Krajewski et al. (2018) and Bock 
et al. (2019). Their drones observed German highways and unsignalized intersections, but urban traffic 
phenomena at signalized intersections are not included. The advantages of the drone measuring method 
are pointed out in the above mentioned articles: naturalistic driving behavior and the possibility to 
simultaneously capture the movement of multiple vehicles without any occlusion. The authors compare 
their datasets with that of the New Generation SIMulation (NGSIM) set (Kovvali et al.) and other urban 
intersection data. The NGSIM dataset includes trajectories of vehicles crossing intersections, but it is 
not possible to use the raw trajectories without first smoothing the data or re-extracting the trajectories 
from the video (Thiemann et al. 2008; Krajewski et al. 2018; Coifman and Li 2017). Consequently, the 
acceleration patterns are considered unrealistic. 

3 Car-following model 
This chapter starts off by reviewing the original IDM and its substantial enhancements so far. 

Subsequently, the EIDM is presented with all its modifications. Figure 1 defines the nomenclature, 
since many different definitions can be found in the literature. All listed parameters belong to the 
following vehicle and all variables regarding the leader will carry the subindex n. 
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𝑎𝑓𝑟𝑒𝑒(𝑡) = 𝑎𝑚𝑎𝑥 [1 − (
𝑣𝑛−1(𝑡)

𝑣0(𝑡)
)

𝛿

] (3) 

without using the case distinction of the IIDM, but by linearizing the changes in the desired velocity 
𝑣0(𝑡) (see Section 3.4). The following equation of the resulting acceleration 𝑎(𝑡 + ∆𝑡) further differs
from that of the IIDM. Instead of calculating the exponent with 𝑎𝑓𝑟𝑒𝑒(𝑡), its absolute value is used. If
the exponent were negative, the acceleration would be unsteady at 𝑣0(𝑡).

The resulting acceleration 

𝑎(𝑡 + ∆𝑡) =

{

𝑎𝑚𝑎𝑥 [1 − (
𝑠𝑛−1

∗ (𝑡)

𝑠(𝑡)
)

2

] 𝑠𝑛−1
∗ (𝑡) ≥ 𝑠(𝑡)

𝑎𝑓𝑟𝑒𝑒(𝑡) [1 − (
𝑠𝑛−1

∗ (𝑡)

𝑠(𝑡)
)

2∗𝑎𝑚𝑎𝑥

|𝑎𝑓𝑟𝑒𝑒(𝑡)|
]   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(4) 

differentiates between two cases: driving at distances lower than the desired gap and higher than the 
desired gap. 

3.2 Human Driver Model 
The Human Driver Model (Treiber et al. 2006) was developed by the authors of the IDM. To 

generate human driver behavior in the model, they introduced a reaction time, imperfect estimation 
capabilities and temporal and spatial anticipation. Spatial anticipation has not yet been integrated into 
the EIDM in SUMO. 

Due to the time-continuous form of the IDM, the reaction time was introduced with a Delay 
Differential Equation (DDE). As SUMO runs in a time-discrete fashion, the variables of the last several 
time steps would need to be stored in vectors to employ this method, thereby requiring significant 
amounts of memory. In addition, the driver always reacts to an earlier state 𝑡 − 𝑡𝑟𝑒𝑎𝑐  ago and the model
needs to be carefully calibrated to stay stable. To solve these issues, Action Points (APs) are introduced. 
Simulating with APs implies that the driver can instantaneously process any information at the action 
time 𝑡𝐴𝑃. Between two APs, the model uses the variables from the last AP update. Furthermore, 𝑡𝐴𝑃 can
be varied throughout the simulation to overcome stability issues when the driver needs to react quickly. 

The estimation errors are modeled using a Wiener process, which is defined by the variable 𝑤𝑖 ,
determined at step i, using the correlation time �̃�, a randomized number 𝜂𝑖 of variance 1 and the time
step ∆𝑡 of SUMO: 
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is determined by calculating the ratio between the current velocity 𝑣𝑛−1(𝑡) and the desired velocity 
𝑣0(𝑡) and the ratio between the desired gap 𝑠𝑛

∗
−1(𝑡) and the actual gap 𝑠(𝑡). The latter ratio represents 

the intelligent braking strategy and assures a collision-free execution of this model. However, this term 
does not allow following vehicles to reach the desired velocity in homogeneous traffic conditions and 
induces ever larger gaps. The Improved Intelligent Driver Model (IIDM) accounts for this negative trait 
by changing the model characteristics close to the desired velocity (Treiber and Kesting 2013b). The 
new term of free acceleration leads to more realistic gaps between vehicles. The authors calculate 
𝑎𝑓𝑟𝑒𝑒 (𝑡) by differentiating between two cases: 𝑣𝑛−1(𝑡) ≤ 𝑣0 and 𝑣𝑛−1(𝑡) > 𝑣0. The EIDM calculates 
the free acceleration 
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𝑤𝑖 = 𝑒−
∆𝑡
�̃� ∗ 𝑤𝑖−1 + √

2∆𝑡

�̃�
∗ 𝜂𝑖

(5) 

The variable 𝑤𝑖  is then used to calculate the estimated distance  𝑠𝑒𝑠𝑡(𝑡), the estimated velocity of
the leader 𝑣𝑛

𝑒𝑠𝑡(𝑡) and a driving error 𝜎𝑎𝑤𝑎(𝑡), which is added to the acceleration term. For the
systematic derivation, see Treiber et al. (2006). 

In equations (6), (7) and (8), the variables 𝑤𝑠(𝑡), 𝑤𝑛(𝑡), 𝑤𝑎(𝑡) are the corresponding Wiener
processes, represented in (5). The parameters 𝑉𝑠, 𝜎𝑟 and 𝜎𝑎 describe the respective magnitude of the
errors. 

 𝑠𝑒𝑠𝑡(𝑡) = 𝑠(𝑡) ∗ 𝑒𝑉𝑠𝑤𝑠(𝑡)       (6) 

𝑣𝑛
𝑒𝑠𝑡(𝑡) = −𝑠(𝑡)𝜎𝑟𝑤𝑛(𝑡) + 𝑣𝑛(𝑡) (7) 

�̃�(𝑡) = 𝑎(𝑡) + 𝜎𝑎𝑤𝑎(𝑡) (8) 

By introducing a reaction time, the model can become unstable and simulate accidents. To prevent 
those the model uses anticipation terms. The driver anticipates the velocity of the leader and his own 
acceleration to remain constant until the next AP, resulting in the predicted velocities and distances in 
(9), (10) and (11). 

 𝑣𝑛−1
𝑝𝑟𝑒𝑑(𝑡) = 𝑣𝑛−1

𝑒𝑠𝑡 (𝑡𝐴𝑃) + (𝑡 − 𝑡𝐴𝑃) ∗ 𝑎(𝑡𝐴𝑃) (9) 

𝑣𝑛
𝑝𝑟𝑒𝑑(𝑡) = 𝑣𝑛

𝑒𝑠𝑡(𝑡𝐴𝑃) (10) 

𝑠𝑝𝑟𝑒𝑑(𝑡) = 𝑠𝑒𝑠𝑡(𝑡) − (𝑡 − 𝑡𝐴𝑃) ∗ Δ𝑣𝑛−1
𝑒𝑠𝑡 (𝑡𝐴𝑃) (11) 

3.3 Enhanced Intelligent Driver Model 
The Enhanced IDM improves the lane changing behavior of the original IDM, since it was first 

developed as a single-lane model (Kesting et al. 2010). This model reduces the deceleration when gaps 
are instantaneously reduced after lane changes and, nevertheless, remains collision-free. A new 
equation calculates the Constant Acceleration Heuristic (CAH) 𝑎𝐶𝐴𝐻(𝑡) as follows, taking the
acceleration 𝑎𝑛(𝑡) of the leader into account.

𝑎𝐶𝐴𝐻(𝑡) =

{

𝑣𝑛−1
2 �̃�𝑛

𝑣𝑛
2 − 2s(t)�̃�𝑛

 𝑣𝑛(𝑣𝑛−1 − 𝑣𝑛) ≤ −2s(t)�̃�𝑛 

�̃�𝑛 −
(𝑣𝑛−1 − 𝑣𝑛)2𝜃

2s(t)
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(12) 

𝜃 = {
0  𝑣𝑛−1 − 𝑣𝑛 < 0
1  𝑣𝑛−1 − 𝑣𝑛 ≥ 0

(13) 

�̃�𝑛 = min(𝑎𝑛(𝑡), 𝑎𝑚𝑎𝑥) (14)
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𝑎𝐴𝐶𝐶 = {
𝑎𝐼𝐷𝑀        𝑎𝐼𝐷𝑀 ≥ 𝑎𝐶𝐴𝐻

(1 − 𝑐𝐴𝐶𝐶)𝑎𝐼𝐷𝑀 + 𝑐𝐴𝐶𝐶 [𝑎𝐶𝐴𝐻 + 𝑏 ∗ tanh (
𝑎𝐼𝐷𝑀 − 𝑎𝐶𝐴𝐻

𝑏
)]   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(15) 

This results in a temporary acceptance of lower gaps. Without this modification, the vehicles in 
SUMO often do not change lanes or brake hard after lane changes when using the IDM. 

3.4 Further EIDM enhancements 
In order to create a realistic human driver model in SUMO, a few more modifications have to be 

carried out. First of all, the introduced estimation errors und reaction times cause problems when 
decelerating to 0 m/s. Acceleration jumps occur at small gaps because the predicted and estimated 
values are wrought with intentional errors. Consequently, the virtual driver cannot smoothly approach 
the minimal gap 𝑠0. That problem is solved by introducing equation (16). When reaching the gap 𝑠0 +
γ (minimal gap plus threshold), the vehicle is forced to decelerate further, although the desired gap 
𝑠𝑛−1

∗ (𝑡) might be smaller than the actual gap 𝑠(𝑡). This leads to vehicles stopping prior to 𝑠0, but
overcomes the effect of oscillating accelerations at low gaps. γ values between 0.3 and 0.5 were 
empirically determined to be suitable. 

𝑠𝑛−1
∗ (𝑡) = {

𝑠(𝑡) + 0.05 𝑠𝑛−1
∗ (𝑡) < 𝑠(𝑡) < 𝑠0 + γ

𝑠𝑛−1
∗ (𝑡)       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

(16) 

Analog to the definition of the speed factor in SUMO, every vehicle is assigned an individual 
minimal gap 𝑠0 from a normal distribution.

Another adjustment is made regarding changing speed limits. The presented equations in Section 
3.1 do not take changing speed limits into account. We therefore use the simple linear function in (17) 
to continuously change the desired velocity when the speed limit changes. The model receives a new 
parameter 𝑇𝑝𝑟𝑒𝑣 to look 𝑇𝑝𝑟𝑒𝑣*𝑣𝑛−1 meters ahead. This results in a model-internal desired velocity 𝑣0

𝑖𝑛𝑡

when driving near two edges with different speed limits 𝑣0
𝑖  and 𝑣0

𝑖+1. The distance to the upcoming
edge is represented by s𝑖(t).

𝑣0
𝑖𝑛𝑡(𝑡) = {

𝑣0
𝑖𝑛𝑡 − (𝑣0

𝑖 − 𝑣0
𝑖+1) ∗ ∆𝑡/𝑇𝑝𝑟𝑒𝑣 s𝑖(t) < 𝑇𝑝𝑟𝑒𝑣 ∗ 𝑣𝑛−1

𝑣0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(17) 

Furthermore, all turns at junctions receive a speed limit according to Table 1, which is used to limit 
the velocity when turning. The parameters in Table 1 refer to the turn categories in SUMO, which are 
defined by the turn’s radius. Alternatively, the limits could be calculated using the specific radius of the 
turn or street curvature. 

To update the desired velocity with the maximum assigned speed of the next turn, the model uses 
Equation (17) with a look ahead of 𝑇𝑝𝑟𝑒𝑣*𝑣𝑛−1 in order for the vehicle to reach that speed before turning.

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

𝜃 is the Heaviside step function. The CAH-model cannot operate as a stand-alone model, it is used 
as an extension of the IDM. The acceleration 𝑎𝐴𝐶𝐶  is calculated using the new coolness parameter 𝑐𝐴𝐶𝐶 , 
with values between 0 and 1. It describes how “cool” a driver reacts when gaps are reduced. 
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Parameter 
LINKDIR TURN TURN 

_LEFTHAND LEFT RIGHT PARTLEFT PARTRIGHT

𝑣0 [m/s2] 5.0 5.0 9.0 8.0 12 12 

Table 1: Speed limits for turns at junctions in SUMO 

According to Wagner and Lubashevsky (2003), the time period between subsequent human driver 
decisions can amount to several seconds. For the model, such large reaction times result in hard braking 
behavior. This is solved by introducing variable APs (Treiber and Kesting 2017). Equation (18) is based 
on a similar formula, but uses a predefined action time 𝑡𝐴𝑃 and a constant threshold 𝜀 instead of a
random number. This stabilizes the model during critical events, still allowing for potentially long 
reaction times. The modeled driver reacts instantaneously when the car-following model calculates 
negative acceleration changes smaller than −𝜀. 

𝑎(𝑡) − 𝑎(𝑡 − 𝑡𝐴𝑃) < −𝜀 (18) 

APs have an additional effect on the model: At standstill, just before drive off, the acceleration can 
jump to a value as high as 𝑎𝑚𝑎𝑥. In reality, the jerk is limited by the inertia of the vehicle and the
powertrain. This characteristic is incorporated in the EIDM by applying a simple hyperbolic tangent 
function, thereby introducing a new correction factor 𝑎𝑐𝑜𝑟𝑟(𝑡) (see Equation (19)) that limits the jerk
during drive off. This requires the detection of the time at drive off  𝑡𝑜𝑓𝑓 and the definition of a new
parameter: the time duration 𝑡𝑎𝑚𝑎𝑥  between drive off and reaching the maximal acceleration.

𝑎𝑐𝑜𝑟𝑟(𝑡) = {
(tanh (((𝑡 − 𝑡𝑜𝑓𝑓) ∗ 2/𝑡𝑎𝑚𝑎𝑥 − 𝑀𝑏𝑔) ∗ 𝑀𝑓𝑙) + 1) /2   t − 𝑡𝑜𝑓𝑓 ≤ 𝑡𝑎𝑚𝑎𝑥

      1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
(19) 

The new 𝑎𝑐𝑜𝑟𝑟(𝑡)-function is multiplied with the maximal acceleration 𝑎𝑚𝑎𝑥, thus better replicating
drive off procedures of measured trajectories. Examples showing the correction factor over time for 
specific parameter sets are plotted in Figure 2. Parameter 𝑀𝑓𝑙 defines the flatness of the acceleration
curve and should optimally take on values between 1.5 and 3. A change in parameter 𝑀𝑏𝑔 shifts the
curve in the direction of the x-axis. Lowering the value results in reaching higher 𝑎𝑐𝑜𝑟𝑟  values earlier
in time. 

Figure 2: Drive off correction factor 
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𝑠𝑛−1
∗ (𝑡)

𝑠(𝑡)
=

{

√(
𝑠𝑛−1

∗ (𝑡 − ∆𝑡)

𝑠(𝑡 − ∆𝑡)
)

2

−
∆𝑡 ∗ 𝑗𝑚𝑎𝑥

𝑎𝑚𝑎𝑥
 (

𝑠𝑛−1
∗ (𝑡 − ∆𝑡)

𝑠(𝑡 − ∆𝑡)
)

2

− (
𝑠𝑛−1

∗ (𝑡)

𝑠(𝑡)
)

2

>
∆𝑡 ∗ 𝑗𝑚𝑎𝑥

𝑎𝑚𝑎𝑥

𝑠𝑛−1
∗ (𝑡)

𝑠(𝑡)
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(20) 

To simulate driving on multi-lane roads, car-following models need to be coupled with a lane change 
model. This study uses the default lane change model integrated in SUMO (Erdmann 2014). The model 
is modified for an improved performance with the EIDM. Whether the modifications also improve the 
operation of the other car-following models, will require further investigation and, therefore, are not 
proposed in this paper. 
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Finally, the decrease of the ratio 𝑠𝑛
∗

−1(𝑡)/𝑠(𝑡) is limited. This modification produces more realistic 
jerks, especially in a simulation environment with junctions, traffic lights and lane changes, where the 
actual gap 𝑠(𝑡) and the desired gap 𝑠𝑛

∗
−1(𝑡) can instantaneously change. These discontinuities can be 

countered by the following Equation (20), which limits the change of the ratio to a specific magnitude. 
For 𝑠𝑛

∗
−1(𝑡) ≥ 𝑠(𝑡) (see Equation (4)), this adjustment guarantees that the jerk of the vehicle never 

exceeds 𝑗𝑚𝑎𝑥 , which is a freely selectable, positive parameter.
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right. The arrows represent the street and direction of traffic considered in this study. The vehicles drove 
freely after passing the intersection with a speed limit of 50 km/h. The light signal at this junction 
operated in a fixed-time fashion with a cycle time of 120 s, divided into the following phases in the 
direction of the arrows: 33 s of green light, 3 s yellow, 24 s red, 34 s green, 3 s yellow and 23 s red. 
Between red and green phases, the light signals switched to red-yellow for 1 s. 

Specific configurations and anomalies need to be considered: 

 The lanes before the junction are narrower than behind the junction.
 Only phases, when exclusively passenger cars and vans crossed, are analyzed, this results in

disregarding three green phases when heavy duty vehicles crossed.

Figure 3: Drone recording of the signalized junction with bounding boxes and vehicle types 
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4 Case study 
In this chapter, real-world trajectories are compared to traffic simulation results generated with 

SUMO and the EIDM. First, the environment and the specific configuration of the scenario are 
introduced. The details of the aerial measurements are described, including an accuracy evaluation. The 
results are then compared to those of the SUMO simulation by means of time headways, speeds and 
other characteristic values. 

4.1 Environment 
Figure 3 shows one frame of drone videos recorded on Monday, July 2, 2018, between 07:00 and 

07:35. It depicts a junction in Stuttgart, Germany, often referred to as “Neckartor”. The geographical 
coordinates are approximately 48°47'18.7"N 9°11'28.9"E. The video frame extends 230 m from left to 
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 The red line shown in Figure 3, used as observation reference line, is located approximately
3.5 m to the right of the actual stop line, because some vehicles stopped slightly past it.

 Only the two left lanes are analyzed, because many vehicles in the right lane are temporarily
covered by a tree and some also turn right.

In sum, 1050 vehicle trajectories and 540 accelerations starting at 0 km/h were observed (30 green 
phases consisting of 9 vehicles in 2 lanes each). 

4.2 Drone data 
The full dataset contains over three hours of video recordings in segments of 7-15 minutes. The 

dataset used for the evaluation of the car-following model consists of 5 videos, each about 7 minutes 
long. The videos were recorded with a Zenmuse X5R camera mounted onto a DJI Inspire 1 quadcopter. 
The camera generated RAW-files with a resolution of 3850p25. 

Figure 4 shows the applied traffic measurement process. After the video is recorded, geolocations 
are referenced at about 10 different reference positions within a single frame. The references are used 
to define the camera location, which is then tracked for all frames of the recording. The camera tracking 
algorithm uses automatically detected, well trackable, stationary markers, a method previously used by 
Kaufmann et al. (2018). 

The frame-by-frame vehicle detection uses an artificial neural network for object detection. For this 
recording, a Faster R-CNN (Ren et al. 2015) with Resnet101 (He et al. 2016) is chosen. Afterwards, the 
screen positions of the detections are converted into geographic coordinates, using the camera model 
information and the tracked camera position for each frame. 

The tracking algorithm eventually joins the single frame detections to form vehicle trajectories. 
First, an Intersection over Union (IOU) tracker (Bochinski et al. 2017) combines the detections that 
closely overlap in successive frames into short vehicle trajectories. Then we use a particle filter to 
predict the path of these short trajectories and connect them with others. This leads to trajectories that 
usually cover the entire recording area and correspond to a single vehicle. Some mismatches are 
adjusted manually. 

In order to reduce measurement errors, the vehicle positions are smoothed, after which the velocity 
is immediately derived. This will be discussed in detail in the next section. 

Figure 4: UAV based traffic measurement process 
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We take a measurement point related to the time instant 𝑡𝑛. Then, we perform the linear regression
for all measurements within a time interval 𝑡𝑛 − 0.5𝑇𝑆 ≤ 𝑡 ≤ 𝑡𝑛 + 0.5𝑇𝑆, where 𝑇𝑠 is the time interval
duration of the linear regression. In the following, we refer to 𝑇𝑠 as the MLR interval.

In order to obtain the vehicle speed 𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2, we first calulate 𝑣𝑥 and 𝑣𝑦 separatly via the MLR,
using the same interval. Afterwards, we use the MLR to obtain the acceleration from the speed using a 
different interval.  

In order to find suitable MLR intervals, a measurement was carried out with a reference vehicle in 
the MEC-View research project (Gabb et al. 2019). The vehicle was equiped with an Automotive 
Dynamic Motion Analyzer (ADMA), a highly precise Inertial Measurement Unit (IMU) that uses a 
Differential Global Positioning System (DGPS). We use the speed measurement and the derived 
acceleration as the ground truth for a comparison of the smoothing parameters. 

Figure 6 shows the first measured scenario: the vehicle stops at an intersection. In the second 
scenario, in Figure 7, the vehicle drives across an intersection. The second column shows the 
measurement results using an MLR with an interval of 1 𝑠, and the third column shows the results using 
an MLR with an interval of 2 𝑠. The first row shows the measured speed, the second row only the 
measured ADMA acceleration, the third row shows the acceleration as derivative of the speed, and the 
last row shows the resulting acceleration using an MLR with an interval of 1 𝑠. 

The results in Figure 6 show that a speed MLR interval of 1 𝑠 leads to a strong acceleration error 
propagation. Only an MLR interval of 2 𝑠 reduces the error sufficiently, but may sometimes cut off 
short-term spikes. Nevertheless, we consider the data quality to be quite usable. 

Figure 5: Explanation of the linear regression procedure. With a framerate of 25 fps, the 
MLR interval is 2 s (Kaufmann et al. 2018). 

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

4.3 Measurement accuracy evaluation 
The applied measuring method contains two main sources of error: First, the bounding boxes of the 

same vehicle differ slightly in each frame. This results in a position jitter. Secondly, even the tracking 
of the stationary reference points causes a small jitter in the camera position, which affects the 
transformation of the vehicle positions into world coordinates. 

For a measurement with 25 frames/s and with a position error ∆𝑝, the error propagates to the speed 
with ∆𝑣 = 1⁄𝑡 ∆𝑝 =  25 1⁄𝑠 ∆𝑝. The acceleration error increases quadratically ∆𝑎 = 1⁄𝑡2 ∆𝑝 = 
625 1⁄𝑠2 ∆𝑝. As solution for this problem, we apply an averaging procedure using a moving linear 
regression (MLR) as shown in Figure 5. 
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Figure 6: Reference Measurement Scenario 1: Vehicle stops at an intersection. a) the ADMA ground truth, b) 
the UAV based measurement with an MLR of 1 s and c) the UAV based measurement with an MLR of 2 s 
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Figure 7: Reference Measurement Scenario 2: Vehicle merges at an Intersection. a) the ADMA ground truth, b) 
the UAV based measurement with an MLR of 1 s and c) the UAV based measurement with an MLR of 2 s 
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 The vehicle reaches 10 km/h in less than 3 s.
 The vehicle reaches 30 km/h in less than 8 s.
 The vehicle is slower than 60 km/h for the full 10 s of drive off.
 Right before the start-up the vehicle comes to a standstill for at least 2 s.
 The acceleration is between -5 m/s2 and 5 m/s2 for the full 10 s of drive off.
 The vehicle has an internal combustion engine.

This specific method resulted in over 2000 comparable drive off trajectories, showing that the 
vehicles reach 1 m/s after an average time of 0.8 s and their maximal acceleration after an average time 
of 2.3 s. The average time the vehicles need to reach 1 m/s is then added to every drive off detected by 
the aerial measurements. 

Figure 8a) shows the mean accelerations of the drive off procedures of the first nine vehicles (with 
offset) after the light signal turns green. A drop and rise of the acceleration between approximately 3 s 
and 8 s can be recognized. This phenomenon originates from powertrains with manual transmissions. 
The difference between vehicles with automatic and those with manual transmissions becomes evident 
when comparing their mean acceleration curves. Figure 9 shows curves from above mentioned 
measured drive offs of the various vehicle studies. The curves in Figure 8b) and dashed lines in Figure 
9 represent the absolute standard deviation of the corresponding acceleration curves, which are approx. 
±0.5 m/s2 over the whole time period except before the acceleration peak is reached and during gear 
shifting, where the absolute standard deviation is higher because of different gear shifting times and 
durations of the drivers. 

Interestingly Figure 8 reveals that the mean maximal acceleration drops until it reaches a plateau 
with the fourth and following vehicles. This corresponds to the time headways, shown in Figure 10a), 
which also drop significantly until the fourth vehicle passes the intersection. 
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4.4 Analysis of the drive off trajectories 
The aerial measurement method cannot detect the initial movement of the vehicles until they reach 

an average speed of about 1 m/s. An offset has to be applied to the trajectories in order to remedy this 
undesirable feature. For this reason, data from multiple vehicle measurements are extracted and used 
for comparison. The data is provided by the FKFS, where over the past several years many vehicle 
studies have been carried out, each collecting a vast amount of data at high measurement resolutions. 
Vehicle, route and driver specifications of the data samples can be found in the literature (Fried 2004; 
Rumbolz et al. 2010; Wagner et al. 2010). 

The data was entirely collected in the broader area of Stuttgart. To identify a comparable offset all 
start-up procedures that fulfill the following specifications are extracted: 
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Figure 9: Mean acceleration (solid lines) and absolute standard deviation (dashed lines) 
curves of vehicles with a manual and an automatic transmission when driving off 

Figure 8: a) Mean acceleration curves of the first 9 vehicles in the queue from the aerial 
measurement data and b) their corresponding absolute standard deviation 
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CF-
Model 

Length 
[m] MinGap [m] speedFactor [-] Accel 

[m/s2] 
Decel 
[m/s2] 

Tau 
[s] 

ActionStep 
[s] 

𝛿 
[-] 

Mean Min Max Mean Dev Min Max 

Krauss 
Model 

3 

2.5 2.5 2.5 1.1 0.2 0.9 1.4 

2.25 1.75 1.1 

0.5 - 
4 2.50 2.00 1 

4.5 2.75 2.25 0.9 

5 3.00 2.50 0.8 

Intelligent 
Driver 
Model 

3 

2.5 2.5 2.5 1.1 0.2 0.9 1.4 

2.25 2.5 1.1 

0.1 4 
4 2.50 2.75 1 

4.5 2.75 3.00 0.9 

5 3.00 3.25 0.8 

Extended 
Intelligent 

Driver 
Model 

3 

2.5 2.0 3.0 1.1 0.2 0.9 1.4 

2.40 2.40 1.2 0.5 

2 
4 2.70 2.70 1.1 0.5 

4.5 3.00 3.00 1 0.4 

5 3.50 3.50 0.9 0.4 

Table 2: Parameter sets for the SUMO simulations 

CF-model 𝑇𝑝𝑟𝑒𝑣

[s] 
�̃�𝑒𝑠𝑡
[s] 

�̃�𝑒𝑟𝑟
[s] 

𝑉𝑠
[-] 

𝜎𝑟
[-] 

𝜎𝑎
[-] 

𝑐𝐴𝐶𝐶
[-] 

𝑡𝑎𝑚𝑎𝑥
[s] 

𝑀𝑓𝑙

[-] 
𝑀𝑏𝑔

[-] 
𝑗𝑚𝑎𝑥
[m/s3] 

EIDM 4 10 3 0.1 0.02 0.1 0.99 1.2 2 0.7 3 

Table 3: Additional parameters for the EIDM 
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4.5 Simulation 
To set up the simulation environment delineated in Figure 3, a respective map is extracted from 

OpenStreetMap and converted to a SUMO network. After manual changes to the map, such as changing 
the traffic light program to the one used that day and insuring the correct edge and lane configurations, 
the traffic flow is inserted by defining one flow passing the intersection in the direction of the above 
mentioned arrows. The flow is defined in a manner to ensure that all vehicles passing the traffic light 
during a green phase have before come to a complete stop. The simulation duration is identical to that 
of the real-world measurement (30 green phases in 35 minutes). 

Apart from the car-following model, the selection of the specific parameter set for each vehicle has 
a major effect on the simulation. As an extensive parameter identification is not part of this publication, 
we run simulations with each of the three car-following models. Every simulation contains four 
different sets of vehicle parameters, distributed evenly throughout the simulation. Table 2 shows these 
sets, where parameters existing in each model are varied. Specific parameters for the EIDM, listed in 
Table 3, are identical for all vehicles and are taken from literature or, in the case of newly introduced 
parameters, derived from first empirical observations. Lastly, SUMO version 1.0.1 is used with a time 
step ∆𝑡 of 0.1 s for the Intelligent Driver Models and 0.5 s for the Krauss Model. 
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The combination of IIDM with reaction times and acceleration correction (Equation (19)) produces 
realistic values with respect to time headways, velocities and accelerations. The acceleration curves of 
the first 9 vehicles in the different simulations are shown in Figure 11, where each row features the 
results of the different models. Column a) shows the mean acceleration curves, b) the absolute standard 
deviation of each sample and c) the Mean Bias Error (MBE) between the model and the real-world 
measurement. The Mean Absolute Error (MAE) between the mean acceleration curves is calculated 
seperatly for each vehicle position. 

This first analysis of the EIDM shows more accurate acceleration trajectories compared with the 
IDM and the Krauss model. However, the results of the Krauss model improve significantly when we 
cut off the first acceleration peak, illustrated in Figure 11a) third row, and delay the drive off to a later 
point in time. 

Figure 10: a) Mean time headways between vehicles (solid lines) and the absolute standard deviation of each 
sample (dashed lines) when passing the reference stop line, b) mean speed of vehicles (solid lines) and the 

absolute standard deviation of each sample (dashed lines) when passing the reference stop line 

a) b) 
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4.6 Comparison between observations and simulations 
This chapter provides a first brief comparison between the real-world data and the results of the 

simulations. As the model parameters are selected empirically, this section does not focus on the 
absolute differences between the models, but rather on model characteristics and shows the capability 
of the EIDM to replicate the observed acceleration curves. 

Figure 10a) depicts the mean time headway of the simulated and real-world vehicles. The model 
results generally show good agreement with the observations. With more suitable parameter sets, both 
the IDM and the Krauss model could replicate the measured headways even more accurately. The 
advantage of the Extended IDM becomes evident, when we compare the mean speed of the vehicles in 
Figure 10b). While, in this study, the parameters of the IDM and the Krauss model could not be tuned 
to reproduce the observed velocity curve, the EIDM reflects the real-world behavior with the chosen 
parameter set. The velocity curve of the IDM simulation levels off due to its characteristic of never 
reaching the desired velocity: when increased in an effort to match the curve of the real-world data, the 
first vehicles drive unrealistically fast. The IIDM resolves this issue, but vehicles still start off fast, 
reach the saturation speed early and experience sudden acceleration changes when combined with 
reaction times. The Krauss model can only match the observed speed curve with low acceleration 
parameters, which stands in contrast to the measured acceleration curves and maximum values. 
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improve the model. 

In the past, different parameter identification techniques have been introduced to calibrate the IDM 
using floating car data, but that usually results in low 𝑎𝑚𝑎𝑥  values, which do not agree with the data
presented in this study.  

Table 4 lists such calibrated parameter sets. 
Kovács et al. (2016) calibrate the IDM to obtain accurate flow capacities and time headways at 

signalized intersections. They use a reliable method to calculate the IDM parameters based on the time 
headway saturation. On the negative side, the resulting 𝑎𝑚𝑎𝑥  value and the desired time headway are
rather low for urban traffic flow (Schulz 2013). 

In summary, there are many models that can accurately describe time headways and speeds at 
intersections (Le Vine et al. 2016; Dey et al. 2013; James A. Bonneson; Li and Chen 2017; Jumsan 
KIM et al. 2005). But they can generally only calculate the time headway, velocity and acceleration at 
specific points and do not generate trajectories as car-following models can. 

Figure 11: a) Mean acceleration curves of the first 9 vehicles in the queue from the simulation with the 
EIDM (first row), the IDM (second row) and the Krauss Model (third row), b) the corresponding absolute 

standard deviation of each sample, c) the Mean Bias Error between the real-world mean accelerations of the 
queued vehicles and the simulation results, depicted with their respected Mean Absolute Error values over the 

first 9 s of drive off (disregarding the first second, as the movement can’t be correctly detected there) 
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The EIDM possesses a unique characteristic in that the mean maximal acceleration drops until it 
reaches a plateau with approximately the fourth vehicle. Still, the observed vehicles reach their maximal 
acceleration later than those modeled by the EIDM. Consequently, the parameters of the correction term 
need to be slighty adjusted. Increasing the amount and distribution of the parameter sets can further 

19



Parameter EIDM Kovács et al. 
(2016) 

Kesting and 
Treiber 
(2008) 

Treiber and 
Kesting 
(2013b) 

Dallmeyer 
(2014) 

Treiber and 
Kesting 
(2013a) 

𝑎𝑚𝑎𝑥 [m/s2] 2.5-3.5 1.6 1.5-1.6 1.0 1.5 1.4 

�̅�0 [m/s] 13.89 15.28 16.1 15 13.89 16.1 

𝑇 [s] 1.1-1.3 0.86 1.3-1.4 1.0 1.5 1.2 

𝑠0 [m] 1.5-2.5 2 1-1.6 2.0 2.0 1.5 

𝑏 [m/s2] 2.5-3.5 5 0.6-0.75 1.5 2.0 0.65 

𝛿 [-] 2 4 - 4 4 - 

Table 4: IDM parameters used in literature compared to those in this study 
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5 Discussion and conclusions 
In this paper we extended the IDM in SUMO to replicate human driver behavior. First, previously 

published IDM enhancements were introduced and discussed, as they have not yet been integrated in 
SUMO. Additional enhancements of the IDM to account for discontinuities in SUMO’s time-discrete 
simulation were presented, with a special emphasis on the drive off process. 

The drive off of the EIDM was validated using a drone dataset. The vehicle trajectories of the drone 
video were extracted using a Faster R-CNN with Reset101. The specific measurement method was 
outlined and the accuracy of the method was evaluated. The errors were determined to be negligibly 
small. 

Nevertheless, the car-following model was only evaluated with a small amount of data in a specific 
environment: Drive off procedures at a saturated junction. The model will still need to prove that it can 
realistically reproduce other driving situations. In addition, only mean and characteristic values were 
used to compare the observed data with the simulation. The parameter set in this study is not 
comprehensive enough to replicate the standard deviations and typical log-normal distributions (Jin et 
al. 2009) during drive off. A detailed parameter identification for each vehicle could lead to a better 
agreement of modeled and observed behavior. By introducing the new drive off equation, the 
parameters identifying the drive off process can be separated from those characterizing vehicle 
following situations. 

Additional variables could further increase the precision and influence of the individual driver by 
including road slope (Schulz 2013), spatial anticipation (Chen et al. 2009) or using action points 
dependent on the driving situation. Another factor to be considered are aerodynamics, which limit the 
maximal acceleration at high speeds and could explain why the IDM-parameter amax is small when 
calibrating the model using highway traffic data. 

6 Future work 
Future work includes the integration of SUMO into an Unreal Engine driving simulator 

environment. Such linking has already been performed using Unity3D (Biurrun-Quel et al. 2017). The 
ultimate objective is the integration of simulative constructed drive trains (Ebel et al. 2017) into the 
environment, as done in DYNA4 (Kaths et al. 2019) and by Riegl et al. (2019). Additional research is 
needed to investigate the positive effects of more accurate acceleration patterns on energy consumption 
and emission calculations. 

The EIDM will benefit from additional development with respect to cooperative lane changes. We 
plan to integrate the model into the current SUMO version. 
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