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Abstract: This paper illuminates the utilization of SUMO as a powerful tool for ad-
dressing real-world traffic management issues. There is a gap in testing and validating
solutions to in-field conditions due to the high cost and complexity of urban and sub-
urban road networks. The validation step is often skipped, which can lead to a higher
risk in implementing sophisticated solutions that exist in our multimodal transportation
environment. This challenge is addressed by introducing simulations as a crucial pre-
liminary step before real-world application. Accurate simulations require detailed data
on intersection geometries, vehicle distribution, and driver behavior to accurately mir-
ror real-world conditions. To meet these criteria, detailed sensor data on trajectories,
types of road users, and their locations are extensively employed. This data forms the
foundation for calibrated traffic simulations by NoTraffic™ . In conclusion, an in-depth
demonstration of the method used to address a real-world traffic problem with SUMO
is provided, emphasizing SUMO’s effectiveness in building confidence for deploying
solutions in the field.
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1 Introduction

Addressing the complexities of managing traffic in dense urban areas presents a sig-
nificant challenge that necessitates innovative solutions and strategies. As a real-time
traffic management platform, our focus lies in preventing traffic congestion and improv-
ing the overall traffic efficiency [1].

To efficiently solve issues and reduce frictions we need the ability to test our ap-
proaches before deploying them in the field. Currently, many agencies implement new
solutions and configurations directly on-site, a process that inherently creates issues
as the effects of the changes being deployed cannot be accurately predicted. To miti-
gate these challenges, some agencies adopt testing methods such as Synchro [2] and
NetSim [3].

These methods, useful for establishing basic timing plans and provide base-level
splits, cycles, and offsets, are not precise enough for real-time optimization, which re-
quires microscopic simulation. This simulation allows us to model traffic flows based
on the motion of each individual vehicle, including acceleration, deceleration, and lane
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changes for each driver. Examples of microscopic traffic flow simulators include Aim-
sum, VISSIM, MITSIMLab, DRACULA and of course SUMO [4][5].

We have observed that in many simulations, discrepancies arise because the ge-
ometry does not closely align with the real world or the distribution of vehicles is not
representative. These limitations prevent the complete reproduction of field issues in
simulations. Overcoming this gap is an essential aspect when addressing real-world
problems.

In the following sections, more details are given on the rich data provided by NoTraf-
fic™ and demonstrate how we fully leverage it to construct a realistic simulation that
tackles the above-mentioned challenges. A calibrated model allows us to bridge the
gap between the field and simulation.

This approach enables us to adopt a ’simulate-before-deploy’ strategy. When pre-
sented with a solution to an issue, we aim to test it across diverse scenarios to evaluate
its impact on the system as a whole. This approach enables us to build confidence in
our solution before deploying it in the field.

2 Terminology

2.1 NoTraffic™ Data

The NoTraffic™ Sensor Units collect data on each road user (object) through fused
video and radar detection. A Sensor Unit is installed at every approach, ensuring a
comprehensive perspective of traffic at the intersection. Data from the Sensor Units is
sampled at

f > 1Hz (1)

yielding a robust and extensive dataset that is used for real-time signal timing opti-
mization and data analytics.

Figure 1. Road users detection.

The Sensor Units collect the following data for each road user:

1. Classification: car, bus, truck, motorcycle, pedestrian, bicycle, light rail.
2. Position: lane, phase, distance from stop bar, direction, speed.

Additionally, the NoTraffic™ system also provides trajectories for each lane. All sen-
sor data is securely transmitted and stored in the cloud.
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Figure 2. Trajectories per lane.

2.2 Traffic Management

When examining the effectiveness of traffic signals in ensuring efficiency and produc-
tivity, it’s crucial to consider the following factors contributing to their effectiveness:

1. Safety - provide safe transportation for all roadway users.
2. Efficiency - minimize delays, congestion and effective approach management.

To manage traffic effectively within the constraints of safety and efficiency, a control
strategy must be developed, usually this is done using signal timing plans [6] [7].

The design of such a control strategy has significantly impacts the performance of
urban traffic systems. Current traffic signal plans involve complex control logic and a
multitude of parameters that require configuration.

However, in real-world applications of timing plans, there is typically no established
practice of thorough and continuous evaluation. Simulation-based signal optimization
has been limited, mainly due to the heavy computational burden associated with it [8].

2.3 Signal Performance Measures

Automated Traffic Signal Performance Measures (ATSPMs) have garnered significant
attention for their capability to collect and assess real-time and historical data at sig-
nalized intersections. ATSPM data is widely utilized by traffic engineers, planners, and
researchers in various applications scenarios [9] [10].

This paper discusses some of the common ATSPM datasets used by NoTraffic™ :

2.3.1 Traffic counts

This fundamental metric captures the number of vehicles that cross during a given time
period, denoted as T . This count can be conducted for all approaches collectively or
individually.

Let N represent the total count during time period T . From this, the flow rate v can
be derived using the formula:

v =
N

T
(2)
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Usually, T is set to 15 minutes, but more accurate flow rates can be obtained by using
smaller time intervals, such as minutes or seconds.

2.3.2 Average delay per vehicle

An important measure of effectiveness (MOE) at a signalized intersection is delay,
which can be classified into several types [11].

Here, we focus on stopped delay, which accounts for periods when vehicles are
stationary within a specific time frame T . The equation used in this context is given as:

d =
1

N

N∑
i=1

{t | srit < 3m/s} (3)

where:
N = number of vehicles;
srit = speed of the vehicle ri at time t, for t ∈ T .

2.3.3 Arrival on Green - AoG

AoG is a metric indicating phase progression, approximating the ratio of vehicles arriv-
ing when the traffic light is green versus the total number of vehicles arriving within the
time frame T . A good measure of progression is when vehicles arrive at the intersection
on green and can proceed smoothly without needing to stop.

AoG =
Ng

N
(4)

where:
Ng = number of vehicles arrived on green;
N = total number of vehicles arrived at the intersection for all t ∈ T .

2.3.4 Split Failure

A split failure occurs when a phase p turns red while there is still a queue [12]. Split
failure is an important aspect of ATSPM, minimizing incidents of split failures indicates
adequate service for all approaches.

3 Realistic Micro-Simulation in SUMO

To accurately replicate real-world traffic conditions, a highly precise micro-simulation
must be developed. Several key steps are involved in creating a realistic simulation.
Firstly, it’s essential to create a SUMO network that closely resembles real-world road
layouts. Next, the integration of actual traffic light control systems is crucial for re-
producing real-world traffic management. Thirdly, scenarios based on data from real-
world situations need to be created. Finally, the simulation undergoes calibration to
accurately replicate real-world traffic. Methodologies for each stage of traffic modeling,
based on real- world data, will be discussed in further detail in a later section.
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3.1 SUMO Network

Creating a SUMO network for urban intersections can be complex. While Open Street
Maps (OSM) data is commonly used, it often contains inaccuracies such as incorrect
number of lanes, directions, and traffic light setup. These errors can result in an un-
realistic SUMO network that is unsuitable for accurate traffic simulations. Figure 3
illustrates these issues, including misplaced traffic lights and mismatched lane details,
compared to the actual intersection layout.

Figure 3. Intersection layout: OSM, Real-World, NoTraffic™ generated intersection.

Relying solely on OSM may not be adequate to accurately create city intersection
layouts [13]. Incorporating additional data sources like Google Earth/Maps or paid ser-
vices can enhance network generation, aiming for a simple yet accurate intersection
representation (see Figure 3). The NoTraffic™ System addresses this by generating
necessary data during installation and configuration, which is then uploaded to the
cloud. This data includes intersections locations (lat, lon), trajectories and lanes in-
cluding bike lanes and left/right turn lanes pockets lengths.

This data, which includes number of lanes and trajectories for each entry point, aids
in the creation of network edges and connections using a specialized tool for generating
networks. An example of an intersection layout derived from this data is illustrated in
Figure 4.

Figure 4. SUMO network approach edge and connections generated from NoTraffic™ cloud data.
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3.2 Traffic Light Controllers

To accurately simulate real-world scenarios, mirroring actual traffic light operations at
intersections is crucial. In addition to using SUMO, a customized traffic light controller
block has been developed. This block can be tailored to replicate the specific traffic light
setup of a real intersection, with additional data sourced from the NoTraffic™ cloud,
including lane phase mapping and detector data.

The integration process involves:

• Configuring software-in-the-loop (SIL) controllers to match actual field controllers.

• Mapping SUMO network traffic light link indexes to corresponding controller
phases.

• Adding lane mappings to detectors.

The virtual controller is a SIL type ring-based controller. Our API supports the in-
tegration of multiple types of SIL into the simulation. Compared to the builtin SUMO
NEMA-controller [14], it incorporates advanced features such as overlaps and con-
troller logic statements. These enhancements enable a more precise replication of
traffic light controllers within simulations. The simulation process, incorporating these
controllers at each simulation step, is presented in the following figure:

Figure 5. SIL Framework.

3.3 Simulation Scenario

Often, simulations used by traffic practitioners lack accurate and up-to-date real-world
traffic counts. When such data is available, it typically represents total vehicle counts
for only a part of the day. Additionally, the data may lack precise details about the types
of road users: car, bus, bicycle, motorcycle, truck, emergency vehicle, pedestrian, light
rail and tram. For creating a representative traffic scenario, a precise distribution of
these counts and their types is crucial.

NoTraffic™ sensors detect road users in every lane and classify them according to
the types mentioned above. All of the data is uploaded to the cloud at a resolution of 1
second.

This data is employed to identify platoons, which are groups of road users progress-
ing together. These platoons are then inserted into the simulation.

The significance of accurate platoon distribution is illustrated in Figure 6. The fig-
ure compares the flow of road users in scenarios using accurately distributed platoons
versus uniformly distributed platoons based on total counts. There is a noticeable

184



Dobrilko and Bublil | SUMO Conf Proc 5 (2024) ”SUMO User Conference 2024”

difference in the flow rate between the two, significantly impacting the simulation out-
come. The figure presents the distinction of road user platoons in scenarios using
high-resolution platoons versus uniformly distributed count-based platoons.

Figure 6. Platoons method vs uniformly distributed counts.

Simulation users can retrieve data for any hour and date, converting it into a format
suitable for SUMO. This capability is made possible by a tool integrated within the
simulation, which allows for the immediate execution of scenarios for the requested
time periods.

The process for executing a scenario is as follows: Vehicle distribution data is pulled
from the cloud and undergoes several manipulations, resulting in:

• Route assignment to each vehicle

• Time of insertion assignment for each vehicle

• Vehicle type assignment (e.g., bus, passenger car, bike)

This processed data is then saved to a file and subsequently uploaded into the sim-
ulation. Each step, the simulation fetches and inserts vehicles for that time step using
SUMO’s add() method, which includes the relevant route and vehicle type. Vehicles
are inserted at the end position of the source edge of their route in the network.

This procedure may contain some inaccuracies, which will be identified and ad-
dressed in future enhancements.

3.4 Calibration

Calibration is an essential step for enhancing the accuracy of the simulation. The more
accurate the simulation, the easier it is to replicate real-world behavior, and it aids in
accurately predicting the impact of improvements. To achieve accurate results, several
factors need to be taken into consideration:

• Metrics for calibration.

• Car-Following model selection.
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• Input parameters for calibration.

• Calibration method.

The selection of the appropriate car following model for use will be addressed in
future research. The current model we are working with is Weidemann 99 [15].

3.4.1 Calibration metrics

Calibration metrics include ATSPMs such as counts, Arrival on Green(AoG), and av-
erage delays. A standard parameter for calibration is speed [16][17], which is highly
correlated with average delay and AoG (refer to sections 2.3.2 and 2.3.3). The count
metric ensures that all anticipated road users are included in the simulation. Metrics
derived from the simulation are then compared with those collected in the field, which
are stored in the cloud. ATSPMs are adopted as calibration metrics, aligning with traffic
engineers who depend on these performance indicators for field-based traffic operation
assessments.

3.4.2 Car-following model

Several car-following models were evaluated, including Krauss, IDM, and Weidemann
99. To avoid overfitting, the models were tested across over 20 intersections and dif-
ferent scenarios. The Weidemann 99 model was selected as the most suitable based
on its superior calibration performance at most intersections. The calibration utilized
similar input parameters across models, although the Weidemann model had a distinct
parameter, CC2, which was set to default value (refer to section 3.4.3). A compari-
son of the calibration results for the average delay ATSPM metric among the Krauss,
Weidemann 99, and IDM models is provided in a Figure 7. Although the results were
comparable, only the Weidemann 99 model met the absolute error threshold of 5 sec-
onds for average delay per phase.

The Weidemann 99 model includes unique thresholds that impact driver behavior
[18]. An example from field observations is the varying following distance between
vehicles over time. The CC2 parameter addresses this behavior. Further investigation
is needed into the unique parameters of the Weidemann 99 model and their effects
on driver behavior in simulations. Likewise, the distinctive parameters of other models
should be explored. Therefore, additional research into car-following models in SUMO
will be conducted.

3.4.3 Calibration input parameters

Input parameters for calibration are presented in the table below. Some parameters
are unique to Weidemann 99 such as thresholds defining drivers behavior [15]. A
unique parameter that is used in calibration is CC2, which represents following distance
variation [m]:

The calibration process is designed to calibrate passenger cars, as they represent
approximately 95% of road users. In future studies, additional types of road users will
be considered.
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Figure 7. Krauss, IDM, W99 calibration results compare: average delay per phase.

3.4.4 Calibration method

The calibration approach involves executing a comprehensive grid search to explore
all feasible combinations of parameter values within a pre-defined range. Achieving
perfect alignment between simulated outcomes and actual field measurements without
any deviation is an unattainable goal in our domain. To mitigate this, we employ the
Chi-square statistical method to compute the error for each metric in each phase, given
by:

χ2 =
n∑

p=1

(Op − Ep)
2

Ep

(5)

where:
Op = scaled observed metric in simulation averaged over the entire scenario period per
phase;
Ep = scaled expected metric in field averaged over the entire scenario period per
phase;
p = phase.
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Table 1. Calibration input parameters.

Parameter Default Value Lower Bound Upper Bound Description

CC1 1.2 s 0.5 s 2.5 s

Desired headway time

between lead/prioritized

and following vehicles.

CC2 8 m 1 m 10 m Following variation.

CC8 2.0m/s2 0.5m/s2 5.0m/s2 Standstill acceleration.

minGap 2.5 m 0.5 m 5 m Empty space after leader.

desiredMaxSpeed varies by road user 1.39 m/s 50 m/s Road user speed by type.

startupDelay 0 s 0 s 3 s

Delay time before

starting to drive

after having had to stop.

jmDriveAfterYellowTime -1 s -1 s 5 s

Violation yellow light if

the light has changed

more recently than the

given threshold.

Each metric is characterized by a unique scale: counts are approximately 103, aver-
age delay spans from 10−1 to 102, and Arrival on Green range from 1 to 102. For the
purpose of computing the overall error, it is essential to normalize these metrics. The
method used for scaling is a variation of MinMaxScaler per phase:

Ep =
ep

M −m
,Op =

op
M −m

(6)

where:
op = unscaled observed metric in simulation averaged over the entire scenario period
per phase;
ep = unscaled expected metric in field averaged over the entire scenario period per
phase;
M = Maximum metric value per phase;
m = minimum metric value per phase.

Each metric is calculated as mentioned in section 2.3. Delay and Arrival on Green
are computed and averaged for each phase over the entire scenario period. Prior
to consolidating these averages for the entire scenario, each cycle is evaluated to
ensure it is representative for inclusion in the overall average. Specifically, Z-Score
Method and Minimum Size Threshold were used to filter statistical outliers. Counts are
computed as total counts of vehicles over all approaches.

The total error is the sum of all the metric errors, weighted equally:

error =
1

3
·
√

χ2
total.count +

1

3
·

√√√√ n∑
p=1

χ2
avg.delay(p) +

1

3
·

√√√√ n∑
p=1

χ2
AoG(p) (7)
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Hence, among all input parameters permutations, the one with the minimum error is
selected. In addition to achieving minimal error, the error for each metric must comply
with specific percentage and absolute thresholds for maximum allowable error. Further
details will be discussed in future work. The simulation undergoes calibration for peak
hour scenarios, which historically exhibit the highest level of saturation. Input parame-
ters that yield the minimum error and meet the specified thresholds are selected to run
simulations for further research.

3.4.5 Calibration results

Our calibration method is demonstrated on one of NoTraffic™ ’s intersection, denoted
by I57. The calibration results in terms of ATSPMs are displayed below. Metrics calcu-
lated in simulation are compared to metrics obtained from the field.

The calibration used a scenario from PM peak hours, resulting the following optimal
parameters:

Table 2. Optimal parameters.

Parameter Value

CC1 1.2 s

CC2 4 m

CC8 2.5m/s2

minGap 1.4 m

desiredMaxSpeed 17.89 m/s

startupDelay 0 s

jmDriveAfterYellowTime 1 s

This setup yields the following results for our calibration metrics for average delay,
counts and Arrival on Green presented accordingly in Figure 8:

It can be noted that the simulation results do not perfectly reflect field conditions.
Achieving zero error is impractical due to the large number of variables that influence
drivers behavior in the real world. Errors in counts can often be attributed to vehicles
at the end of the scenario not entering the sensor range at intersections, where their
detection is possible. This occurs because vehicles are inserted in the end of route
source edge. Consequently, further enhancements are required in the insertion of sce-
nario vehicles as discussed in 3.3. Therefore, a maximum error threshold is permissi-
ble, with errors in counts allowed up to 8%. Beyond this percentage, the flow of vehicles
would represent a different scenario. Additionally, the discrepancies in other calibrated
metrics may be explained by equal values of calibrated input parameters across all
lanes and intersections in the network. Future efforts will focus on lane-specific speed
calibration.

4 Real world application of SUMO

As a company specializing in traffic optimization across multiple urban areas, NoTraf-
fic™ occasionally encounters the need to address on-site challenges, resolving and
testing them prior to deployment. Recently, NoTraffic™ addressed a citizen complaint
in one of the major agencies we are collaborating with.
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Figure 8. Calibration results: Average Delay, Counts and Arrival on Green.

The issue observed in the Eastbound Left Turn (EBLT), phase 5, involves recurrent
split failures during the PM peak. This left turn phase experiences significant demand
during the peak, as demonstrated by the following counts in Figure 9a and the visual
impression in Figure 9b. As you can see, EBLT is the busiest left turn approach. The
queue was building during several cycles causing a spillback to the through movement
lane.

(a) Counts by approach. (b) Split failure of EBLT in the field.

Figure 9. Observed issue in the Eastbound Left Turn (EBLT), phase 5.

This case study illustrates the importance of proper calibration when using SUMO
models to address real-world traffic issues. In the initial step of our solution, SUMO
plays a key role. We leverage its capabilities to replicate the issue by simulating the
intersection scenario at the time of the incident. This allows us to visually identify the
problem before proceeding with resolution efforts, as shown in Figure 10a.

Once the spillback was successfully reproduced in simulation, several strategies
were tested in our algorithm. The one we chose to use is called ”flush queue”, an abil-
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(a) Split failure of phase 5 - EBLT. (b) Split failure of EBLT after flush queue.

Figure 10. Split failure of EBLT before and after fksuh queue.

ity we developed in NoTraffic™. The ”flush queue” strategy is designed to improve the
existing ”gap out” behavior of controllers. By leveraging detailed data on queue length,
estimated time of arrival (ETA) for each vehicle, and vehicle type, as well as queue
information from other approaches, we can develop a more intelligent and adaptable
strategy. This approach allows for the continued servicing of a phase as long as there
is still a significant queue. Following the implementation of the flush queue strategy,
conducting another simulation yields significant improvements as shown in Figure 10b.

While we observed that the issue was solved for that specific time by examining the
SUMO video, we want to ensure its stability throughout the entire day. After examin-
ing the data for a full hour, it becomes clear that the improvement remains consistent
throughout, with a notable 50% enhancement, as illustrated in Figure 11.

Figure 11. Comparison of delay of phase 5.

Once we confirm that the issue is solved in the simulation, we can confidently deploy
the change in field and monitor its behavior. In our analysis, we observed a 43% im-
provement in the average delay of phase 5 after deploying our fix, as shown in Figure
12.

It’s noteworthy that in simulations, there was a 50% improvement, whereas in the
field, the improvement was 43%. This discrepancy can be attributed to various factors:
the day measured after implementing the solution does not entirely match the day
simulated. Additionally, the simulation may need further calibration. Despite these
variations, achieving such similar values is a significant achievement, underscoring the
strong correlation between the simulation and real-world outcomes.
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Figure 12. Avg. delay of EBLT in field: before vs. after flush queue.

This section highlights NoTraffic™ ’s application of SUMO in resolving real-world traf-
fic issues in an urban area. Focused on addressing a specific traffic congestion problem
identified through citizen feedback, the section outlines the steps taken from problem
identification to solution deployment. By leveraging SUMO’s simulation capabilities,
NoTraffic™ was able to replicate the issue, test various strategies, and implement a
solution that significantly improved traffic flow, demonstrating a practical approach to
urban traffic management using simulation.

5 Conclusion

This paper has demonstrated the practical application of SUMO in tackling real-world
traffic optimization challenges. By leveraging the rich data provided by NoTraffic™
sensors, we have showcased the ability to create realistic traffic simulations through
precise calibration. By reproducing real-world scenarios and testing various strategies
in simulation, such as the ”flush queue” strategy highlighted in our case study, we can
confidently deploy solutions that improve traffic flow and reduce congestion in urban
areas. In future work we will provide more details on our calibration process and how
we accurately generate vehicle distributions for scenarios to match those observed in
the field.

192



Dobrilko and Bublil | SUMO Conf Proc 5 (2024) ”SUMO User Conference 2024”

Data availability statement

The data is not publicly accessible due to its ownership by a private corporation.

Competing interests

The authors declare that they have no competing interests.

CRediT authorship contribution statement

Olga Dobrilko: Conceptualization, Methodology, Software, Validation, Formal Analy-
sis, Writing - Review & Editing.
Alon Bublil: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Writing - Review & Editing.

References
[1] A. Stevanovic and M. Zlatkovic, “Evaluation of insync adaptive traffic signal control in

microsimulation environment,” in 92nd Annual Meeting of the Transportation Research
Board, Washington DC, 2013.

[2] K. Udomsilp, T. Arayakarnkul, S. Watarakitpaisarn, P. Komolkiti, J. Rudjanakanoknad, and
C. Aswakul, Traffic data analysis on sathorn road with synchro optimization and traffic
simulation, DOI: 10.4186/ej.2017.21.6.57, 2017.

[3] J. Shadewald and C. Prem, “Quantifying access management benefits using traffic sim-
ulation,” in Proceeds of the Ninth TRB Conference on the Application of Transportation
Planning Methods, 2003, pp. 187–196.

[4] J. Felez, J. Maroto, J. M. Cabanellas, and J. M. Mera, A full-scale simulation model to
reproduce urban traffic in real conditions in driving simulators, DOI: https://doi.org/1
0.1177/003754971348355710.1177/0037549713483557, 2013.

[5] P. A. Lopez, M. Behrisch, L. Bieker-Walz, et al., Microscopic traffic simulation using sumo,
Available online: https://elib.dlr.de/127994/, IEEE, 2018.

[6] P. Koonce and L. Rodegerdts, Traffic signal timing manual. Available online: https://na
cto.org/docs/usdg/signal_timing_manual_fhwa.pdf, 2008.

[7] H. Ceylan and M. G. Bell, Traffic signal timing optimisation based on genetic algorithm
approach, including drivers’ routing, DOI: 10.1016/S0191-2615(03)00015-8, 2004.

[8] T. Balasha and T. Toledo, Simulation-based optimization of actuated traffic signal plans,
Available online: https://transp-or.epfl.ch/heart/2014/abstracts/051.pdf, 2015.

[9] B. Wang, G. G. Schultz, G. S. Macfarlane, D. L. Eggett, and M. C. Davis, A methodology
to detect traffic data anomalies in automated traffic signal performance measures, DOI:
10.3390/futuretransp3040064, 2023.

[10] B. Wang, G. G. Schultz, G. S. Macfarlane, and S. McCuen, Evaluating signal systems us-
ing automated traffic signal performance measures, DOI: 10.3390/futuretransp2030036,
2022.

[11] A. P. Akgungor and A. G. R. Bullen, Analytical delay models for signalized intersections,
Available online: https://nacto.org/docs/usdg/analytical_delay_models_for_sign
alized_intersections_akgungor.pdf, 1999.

193

https://doi.org/10.4186/ej.2017.21.6.57
https://doi.org/10.1177/0037549713483557
https://doi.org/10.1177/0037549713483557
https://elib.dlr.de/127994/
https://nacto.org/docs/usdg/signal_timing_manual_fhwa.pdf
https://nacto.org/docs/usdg/signal_timing_manual_fhwa.pdf
https://doi.org/10.1016/S0191-2615(03)00015-8
https://transp-or.epfl.ch/heart/2014/abstracts/051.pdf
https://doi.org/10.3390/futuretransp3040064
https://doi.org/10.3390/futuretransp2030036
https://nacto.org/docs/usdg/analytical_delay_models_for_signalized_intersections_akgungor.pdf
https://nacto.org/docs/usdg/analytical_delay_models_for_signalized_intersections_akgungor.pdf


Dobrilko and Bublil | SUMO Conf Proc 5 (2024) ”SUMO User Conference 2024”

[12] Federal Highway Administration, Automated traffic signal performance measures, Avail-
able online: https://ops.fhwa.dot.gov/publications/fhwahop20002/fhwahop20002
.pdf, 2020.

[13] C. Bewermeyer, R. Berndt, S. Schellenberg, R. German, and D. Eckhoff, Poster:
Cosmetic-towards reliable osm to sumo network conversion, Available online: https:
//www.david-eckhoff.net/pdf/bewermeyer2015cosmetic.pdf, IEEE, 2015.

[14] M. Schrader, Q. Wang, and J. Bittle, Extension and validation of nema-style dual-ring
controller in sumo, DOI: 10.52825/scp.v3i.115, 2022.

[15] B. Higgs, M. Abbas, and A. Medina, Analysis of the wiedemann car following model over
different speeds using naturalistic data, Available online: https://onlinepubs.trb.org
/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf, 2011.

[16] B. Mahmood and J. Kianfar, Driver behavior models for heavy vehicles and passenger
cars at a work zone, DOI: 10.3390/su11216007, 2019.

[17] B. Ciuffo, V. Punzo, M. Montanino, et al., The calibration of traffic simulation models: Re-
port on the assessment of different goodness of fit measures and optimization algorithms
multitude project–cost action tu0903, DOI: 10.2788/7975, 2012.

[18] B. Higgs, M. Abbas, and A. Medina, Analysis of the wiedemann car following model over
different speeds using naturalistic data, Available online: https://onlinepubs.trb.org
/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf, 2011.

194

https://ops.fhwa.dot.gov/publications/fhwahop20002/fhwahop20002.pdf
https://ops.fhwa.dot.gov/publications/fhwahop20002/fhwahop20002.pdf
https://www.david-eckhoff.net/pdf/bewermeyer2015cosmetic.pdf
https://www.david-eckhoff.net/pdf/bewermeyer2015cosmetic.pdf
https://doi.org/10.52825/scp.v3i.115
https://onlinepubs.trb.org/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf
https://onlinepubs.trb.org/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf
https://doi.org/10.3390/su11216007
https://doi.org/10.2788/7975
https://onlinepubs.trb.org/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf
https://onlinepubs.trb.org/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf

	Introduction
	Terminology
	NoTraffic™ Data
	Traffic Management
	Signal Performance Measures
	Traffic counts
	Average delay per vehicle
	Arrival on Green - AoG
	Split Failure


	Realistic Micro-Simulation in SUMO
	SUMO Network
	Traffic Light Controllers
	Simulation Scenario
	Calibration
	Calibration metrics
	Car-following model
	Calibration input parameters
	Calibration method
	Calibration results


	Real world application of SUMO
	Conclusion



