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Abstract: Vehicular federated learning systems will be beneficial to predicting traffic
events in future intelligent cities. However, they might leak private information upon
model updates. Hence, an honest but curious server could infer private information,
such as the route of a vehicle. In this study, we elaborate on the nature of such privacy
leakage caused by gradient sharing. With a simulated scenario, we focus on determin-
ing who is in danger of privacy threats and how successful a route inference attack can
be.

Results indicate that vanilla federated learning exposes intra-city and commuter traf-
fic to successful location inference attacks. We also found that an adversarial aggre-
gator server successfully infers the moving time of vehicles traveling during low-traffic
periods.

Keywords: Vehicular Federated Learning, Location Privacy, Deep Leakage From Gra-
dients

1 Introduction

As the newest vehicles have more and more sensors, such as cameras, ultrasonic,
radar, and lidar sensors, they can measure various phenomena along their route. Most
of these measurements supply valuable information for other vehicles or to the infras-
tructure maintainer. Hence, sharing these data will be important in a short time.

Since the manufacturers might use various sensors, the vehicles can have different
sensing and processing capabilities. Moreover, the vehicular communication also lim-
its the amount of exchangeable information. This information shall be up-to-date to
provide adequate input for, e.g., navigation algorithms. However, providing direct mea-
surement data reveals the vehicles’ trajectories, thus making a serious privacy breach.

There is a machine learning method called federated learning (FL) [1] that might
solve the above challenges. FL is a decentralized learning method that is free of raw
data sharing. A traditional FL system consists of a central aggregator server and many
participants (e.g., vehicles). The server maintains a global model that the participants
can download. The participants can use the obtained model, e.g., to infer the current
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state of the road network [2]. The participants can also train and update this model with
their local data. The server periodically collects and aggregates these updates. The
traditional aggregation method is the FedAvg algorithm that averages the participants’
local models weighed by the size of their local dataset used for training. At the end
of the communication rounds, the server sends the updated aggregated global model
back to the participants. Hence, the participant will have an up-to-date version of the
model. Moreover, due to the regular updates, the model continuously adapts to the
actual state of the road network. As the server and the participants send the model, i.e.,
a matrix of weights of a neural network, this is a compressed version of the knowledge
obtained by the participants; therefore, it can reduce the usage of the communication
channel compared to sharing raw data.

In an ideal case, this knowledge exchange method provides privacy for the partici-
pants as they do not need to share their measurement data. However, in practice, this
is not the case. By comparing the global model to a local update, the aggregator server
might gain information about the data of a participant vehicle. We call this phenomenon
the gradient leakage.

An honest but curious1 server might exploit the gradient leakage to perform a local-
ization attack to infer one’s route and moving time. Since this information is privacy
sensitive, the FL technique poses a cyber security risk. This paper focuses on ana-
lyzing the risks caused by FL. To this end, we have created a small virtual town and
measured the parking lot occupancy. This research aimed to discuss the following
questions:

1. Who is in danger due to the leaking gradients during the training of a FL system?
2. How successfully can an honest but curious server track a vehicle?

Besides answering the above questions, this study contributes to parking lot simula-
tion in Eclipse SUMO [3] by implementing a parking activity creator tool and presenting
its usage via a case study.

The rest of this paper includes a short literature overview in Section 2. In Section 3,
we describe the scenario generation and process of the simulation. Based on the
obtained simulation results, we assessed the leaking gradient problem. Section 4 sum-
marizes our findings, and finally, Section 5 concludes this paper.

2 Related literature

Finding a vacant parking lot near our destination is challenging in dense urban environ-
ments. If drivers had information about the current parking lot occupancy rates, they
would be more successful in parking place finding. It would also significantly reduce the
searching time [4]; therefore, intelligent transportation networks would benefit from a
parking occupancy prediction system. In our research, we simulated parking activities
by Eclipse SUMO as it can provide large-scale parking lot simulations. For example,
the Python Parking Monitoring Library (PyPML) [5] provides routines to measure and
control parking lot usage in a SUMO simulation.

Modern vehicles equipped with, e.g., cameras can collect information about parking
lot occupancies, but to utilize the gathered data, they should share it over vehicular
communication techniques (Vehicle-to-Everything, V2X). Besides regular engineering

1An honest but curious server rigorously follows the FL protocol without maliciously manipulating the model. How-
ever, it tries to obtain as much information about the participant vehicles as possible.
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requirements, vehicular communication systems shall also respect the drivers’ privacy
[6], especially their location data.

In recent years, FL [1] became popular because it provides a communication efficient
way to exchange compound information. Moreover, in ideal cases, it can also preserve
the clients’ privacy. Consequently, FL has high potential in vehicular use cases [7]. FL
can also help to comply with the General Data Protection Regulation (GDPR) of the
European Union, but there is a trade-off between privacy protection, and model utility
in FL systems [8].

One of the main concerns in FL is the gradient leakage [9], which means that an ad-
versarial FL aggregation server might infer properties of the training set of an FL client
by observing its updates in the weight matrix, or the gradients that are proportional to
them. Our previous study demonstrated that vehicular FL also leaks gradients, which
reveals the drivers’ private information such as location and moving time [2]. In this
paper, we intend to elaborate more on these risks. Following the taxonomy of [10], we
assume that a vehicular, horizontal FL system contains a passive, honest-but-curious
aggregator server. Consequently, it has (plaintext) access to the clients’ model up-
dates. This server performs a single-shot, targeted, passive privacy attack against a
client vehicle during the training time. The attack aims to obtain the targeted vehicle’s
location and moving time information.

3 Simulation

To address the problem of leaking gradients, first, we have to collect training data.
Therefore, we simulated the vehicle movements in a small town to obtain realistic
parking lot occupancy data. For this simulation, we shall define an appropriate sce-
nario. We assumed generated scenarios encourage reproducibility; therefore, we tried
to use SUMO’s generator tools whenever possible. The following sections describe
their parametrization, design decisions, and a new tool that creates parking activities
based on predefined trips.

3.1 Road network

Firstly, we created a random road network with the netgenerate tool. We parametrized
the tool to insert edges 30 times into the net and set up an actuated traffic light.

After that, we drew a land use plan. The generated road network contained a commu-
nity of edges on the south part of the map, which we intended to treat as a village-like
suburb of the town to the north consisting of a couple of residential buildings and a
few commercial amenities forming small mixed-usage zones (see Figure 1). Moreover,
mixed zones with various housing and workplace densities form the core area of the
town, together with some pure residential zones and a small commercial zone.

Additionally, we shall also define parking lots in the road network. As in a typical small
town, we permitted on-street parking on each road. Unfortunately, on-street parking
cannot serve the whole parking demand. Hence, we added a handful of off-street
parking facilities into the scenario.

We can derive the rest of the population’s activities in the simulated town from the
land use plan. However, this plan does not describe the place of educational facilities,
which generate significant traffic. Consequently, we placed 1 kindergarden, 3 elemen-
tary, and 1 middle school on the map.
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Figure 1. Road network and land use of the generated town. 2

Following the German coloring scheme of land use plans [11], Figure 1 illustrates the
static elements of the simulation scenario.

3.2 Transportation activities

Besides the static elements of the road network, a traffic scenario requires the definition
of the traffic demand. To this end, Eclipse SUMO has a tool called activitygen. The
input of this tool includes a statistics file describing the town’s population.

In our scenario, the simulated town has 10,000 inhabitants within 3,500 households
having a 0.58 vehicles

household car posession rate. As these data and the road network corre-
spond to a small town, we defined the age category following the demographic distribu-
tion of the average European Union intermediate (rural) region [12] as summarized in
Table 1. We assumed that 10%-10% of the working age group (e.g., shopkeepers and
employees of some services) begin working respectively at 6:00 and 7:00. These peo-
ple usually leave their workplace around 14:00. Assumably, the majority (50%) of the
population works (including children going to school) between 8:00 and 16:00. How-
ever, there might be a minority (30%) who start working at 9:00. We suspect that many
of them work in flexible time; resulting in a varied closing time around 17:00 and 18:00,
see Figure 2. Besides working, the population sometimes (with a 0.1 rate) also partici-
pates in free time activities.

2In mixed zones, the residential and commercial area densities vary. The placement of the amenities along a road
only serves illustration goals; for exact details, see sources on Github.
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Table 1. Age groups and their population in the simulated town.

Age group #people in the town
0–15 years 1490

15–19 years 520
19–64 years 5830
64–79 years 1540
79–100 years 620

Figure 2. Working opening and closing hours of the population of the simulated town.

200 people leave the town daily, and 1000 persons form an incoming commuter
traffic. Moreover, we added some random, uniform background traffic through the city
(with 0.1 rate). Consequently, there are three vehicle types in the simulated scenario:

• Household vehicles reside in the town, generating a parking demand even at
night. They usually depart in the morning, do some activities during the day, and
return home in the evening.

• Commuter vehicles come to the town every morning. Then they do some activities
and leave the town usually in the evening.

• Random vehicles go through the town without any recurrence or taking any activ-
ities.

3.3 Parking simulation

By default, in Eclipse SUMO, the road network is empty at the beginning of a simulation,
and all parking lots are vacant. Consequently, the first simulated vehicles can easily find
parking spaces at their destination, but as the roads get more and more packed, it will
harden the challenge of parking lot seeking. To mitigate this transient, we ran burn-in
simulations for 4 simulated days. After this burn-in phase, we can make measurements
assumed to be free of such transient states.

However, SUMO’s activitygen tool cannot handle activities that simulate the park-
ing lots or recurrent activities. Hence, we implemented a new tool called parking_

activities3. This tool, written in Python, processes the xml output file of activitygen
and enhances the trips of the different vehicle types in the following manner:

• Household trips: Household vehicles will repeat the activities for days that the
activitygen tool created for them. Our tool collects all individual movements of a
household vehicle and merges them into one trip that originates and terminates

3Available on GitHub.
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at its home location. Within this trip, parking_activities fills the time between
the original movements with stops on the on-street parking lot at the place of the
original activity. Our parking_activities tool also repeats these activity chains
for an input number of days. Between two days, the household vehicles park
at their home location for random time drawn from a normal distribution. The
parameters of this distribution ensure that approximately 95% of the household
population starts their daily activity each day within a ±15 minutes window.

• Commuter trips: As the commuter vehicles enter and leave the simulation each
day, they are easier to handle by parking_activities. It only adds stops in a
parking lot at the destination of the inbound movement of the commuter vehicles.
For each prescribed day, our tool repeats these activity chains of commuter vehi-
cles with new trip identifiers.

• Random trips: The parking_activities tool only repeats the original random
activities created by activitygen for each presribed day.

In this way, Eclipse SUMO shall handle the moving time uncertainties for commuter
and random vehicles, and parking_activities is responsible for simulating the ran-
dom departure time of household vehicles.

Finally, the parking_activities script saves the modified trips into a new file that will
follow the definition of activitygen’s output. Consequently, we can feed this enhanced
file into SUMO’s duarouter tool to generate traffic for the simulation scenarios.

The simulated vehicles behave according to the default parameters in SUMO, and,
during their movements, they measure (via subscriptions) the O(p, t) occupancy rate
of parking lot p at the t measurement time. We used a 50 m measurement range that
is a feasible visual sensor range or a distance within the performance of neither of the
vehicular communication techniques degrades significantly [13]. We used a 1 s simula-
tion step size and 1 Hz measurement frequency. In our experiments, SUMO controlled
the parking lot simulation according to the predefined activity chains. If the predefined
parking lot was already occupied, parking area rerouters helped the vehicles find va-
cant parking spots nearby.

5 simulated day-long simulations (with their corresponding 4 day burn-in phase) were
repeated 5 times with different initial random seeds. In the following, from a machine
learning point of view, we treat these results as if we had an independent random mix-
ture of 25 days of data; despite the fact, that it came from 5 independent measurement
periods containing data of 5 consecutive days.

4 Leaking gradients

Once we had obtained the simulation results, we could evaluate the problem of leaking
gradients as if the vehicles participated in an FL system.

4.1 Evaluation methods

To elaborate on the gradient leakage problem, we shall set up a FL system with a cen-
tral aggregation server. Unfortunately, training an entire FL system is a time-consuming
process. To save computational resources, we simulated the first part of the FL training
process in the following way: We have selected 4300 vehicles (out of the 4644 unique
simulated vehicles) to pre-train a feed-forward neural network model. We trained this
model with an early stopping mechanism to ensure satisfactory prediction performance
without overfitting the training data.
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This pretrained neural network symbolizes a global FL model trained nearly to con-
vergence. We selected 300 vehicles (from the remaining 344) and updated the pre-
trained network with their local data. The resulting new models correspond to the up-
dated models of the clients in an FL system. Therefore, we can analyze these models
for gradient leakages.

4.1.1 Location inference

To formulate the inference methods, we denote the set of measurement times (seconds
of a day) by T = [1, 2, 3, . . . , 24 · 60 · 60] and the set of the defined parking lots in the
road network by P .

To evaluate the privacy leakage in this simulated FL system, we ran inferences with
the global and the local models, resulting respectively in occupancy estimates Ôg(p, t)

and Ôl(p, t) for each (p, t) ∈ P ×T . Let us define the average location difference ∆̄p as:

∆p =

∑
t∈T

(
Ôg(p, t)− Ôl(p, t)

)2
|T |

. (1)

After the inference phase, we evaluated the ∆̄p average location difference for each
p ∈ P parking lots and ranked them into ascending order. We assume that those
parking lots differ more that were inside a vehicle’s training set. To infer the vehicles’
positions, we appointed the top 10 most differing parking lots as the inferred position.
The rationale for this number is that if a driver moves along the least complicated pat-
tern, a triangle in the road network, it will have data from at least 6 parking lots (from
the two sides of the three streets). On the other hand, if we choose too many parking
lots, we risk that the target vehicle’s dataset does not even contain data from so many
parkings.

Finally, to measure the success rate of the gradient leakage attack, we check how
many of the 10 inferred parking lots are in the training set of the target vehicle. We
refer to this count as the positional success rate of the honest-but-curious server.

4.1.2 Moving time inference

We assume that tracking attacks consist of both location and moving time inference.
To address the latter, let us introduce a w time window. As the moving time is rather an
interval than an exact moment, the moving time inference method shall try to infer the
time window in which the target had moved. In this study, we used w = 900 s = 15[ min]
long time windows.

The different vehicle types have different moving patterns: the random vehicles move
probably in 1 time window, the commuters at least in 2. The household vehicles often
move in 2 time windows; however, they can be active in more or even less number of
intervals. Consequently, each vehicle travels in at least one time window. Hence, we
aim to infer 1 time window in which the target had moved.

To infer a moving time window, we shall resample our data set in time to corre-
spond to the time windows. We denote the set of resampled measurement times
τ0 = 0, τ1 = w, τ2 = 2w, . . . , τn = 24·60·60

w
measured in seconds. Respectively, the

Ôt,g and Ôt,l resampled global and local predictions will be the mean of the predictions
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with the original sampling frequency aggregated over the parking lots:

Ôt,g =

∑
p∈P

τt+1−1∑
i=τt

Ôg(p, i)

w
, (2)

Ôt,l =

∑
p∈P

τt+1−1∑
i=τt

Ôl(p, i)

w
. (3)

We shall aggregate the predictions over the parking lots to obtain solely time-related
information. Moreover, as we mentioned, moving time is an interval, not a single mo-
ment. Therefore, we expect that the training data will create plateaus in the

(
Ôt,g−Ôt,l

)2
difference. To find (the beginning or the end of) one of these plateaus, we take the ab-
solute value of the first derivative of the difference of (2) and (3). Then, we identify the
τ̂ moving time as the location of the maximum:

τ̂ = argmax
t

∣∣∣∣ ddt(Ôt,g − Ôt,l)

∣∣∣∣. (4)

Figure 3 illustrates the idea behind the proposed moving time inference method.

Figure 3. Differences between the local and global model predictions in time compared to the move-
ments of a vehicle. Moving times are colored proportionally to the frequency of the corre-
sponding time windows in vehicle’s dataset.

To measure the success of the moving time prediction algorithm, we shall quantify its
error. To this end, we look for the τc time window in the target’s dataset that is closest
to the τ̂ prediction. The to absolute time offset between these two time windows is the
measure of the success of the algorithm, and it is defined as:

to = |τ̂ − τc|. (5)

We shall note that the to is measured in w long time windows.

4.2 Results

The evaluation shows that the location inference method is generally successful, achiev-
ing an average of 55.1–74.1% positional success rate with an approximately constant
standard deviation, see Table 2. Consequently, the FL system leaks significant posi-
tional information in the gradients. The results also show that household traffic is in

86
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more danger than commuter and random traffic in terms of location privacy; see Fig-
ure 4. The primal cause of this difference is that household vehicles visit more parking
lots than the other vehicle types; therefore, it is more likely to choose 10 parking lots
that they have measured.

Table 2. Means and standard deviations of the adversarial success results.

Positional success rate Abs. time offset
commute 5.98 (± 2.02) 1.83 (± 2.21)
household 7.41 (± 2.07) 6.26 (± 9.39)
random 5.51 (± 2.15) 16.78 (± 10.74)

Figure 4. Success rate of the location inference by gradient leakage.

4.2.1 Commuter and random traffic

The location inference method results in a constant performance regardless of the
vehicle types. On the other hand, vehicle type categories fundamentally influence the
success of time inference according to Table 2 and Figure 5.

For the random traffic, the moving time inference algorithm achieves an average of
16.78 absolute time offset value corresponding to approximately 4 hours of error with
an immense standard deviation. It implies that random vehicles do not leak measure-
ment time information while contributing to the FL system.

On the other hand, the moving time inference method identifies the movements of the
commuting vehicles outstandingly well, having an average absolute time offset of 1.83,
which corresponds to an error of approximately 28 minutes. We might have expected
these results as the commuter vehicles come to work in the town and leave after their
shift ends, and these movements happen in a well-defined time range. Consequently,
commuter vehicles leak significant information about the moving times during updating
the FL model.

4.2.2 Household traffic

The household vehicle type creates an exceptionally long-tailed distribution in absolute
time offset; see Figure 5. We suspect that we see here a mixture of two different
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Figure 5. Success rate of the moving time prediction by gradient leakage.

distributions. To this end, we ran a KMeans clustering [14] to create two classes in the
absolute time offset values.

Surprisingly, we found that the two clusters also differ in positional success rate;
see Figure 6. Moreover, according to Figure 7, the vehicles belonging to cluster0
leak significantly more moving time information than those belonging to cluster1 as
the inference algorithm achieves a much lower absolute time offset.

Figure 6. Success rate of the location inference by gradient leakage in the two clusters of household
traffic.

Now, we shall investigate what separates the two clusters. We have checked the
route of the vehicles of both clusters, but we did not find any significant difference.
After that, we compared their moving times. Those in cluster0, see Figure 8a, usually
travel in the morning and the evening like people with a traditional working time. On
the other hand, those in cluster1 drive at night according to Figure 8b. At night, the
parking lots’ occupancy is more or less fixed as only a few cars are on the roads that
late. Therefore, those in cluster1 could measure the same occupancy rate at around
20:00 and 4:00 the next day, which can confuse the moving time inference algorithm.
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Figure 7. Success rate of the moving time prediction by gradient leakage in the two clusters of household
traffic.

(a) Moving time of vehicles in cluster0 (b) Moving time of vehicles in cluster1

Figure 8. Moving time of household vehicles.

Consequently, those household vehicles that move in the morning and the evening
leak more information about their moving times than those that drive in small traffic,
i.e., at night.

4.2.3 Discussion

Training neural networks is a non-deterministic process. Therefore, we repeated the
experiments five times to handle it. We selected another set of vehicles as trainers
and targets for each experiment and ran the entire training, inference, and evaluation
process. The presented values in this study are the aggregated results of these exper-
iments.

The presented inference algorithms are heuristic and do not utilize any additional
information. One may construct more sophisticated attacks against specific targets,
e.g., by testing whether a parking lot is inside the target’s dataset. Moreover, the mov-
ing time inference algorithm does not rely on knowledge of visited parking lots. In our
implementation, the moving time inference algorithm looks only for the highest peak;
however, it would be possible to check whether a specific target moved during a pe-
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riod. In summary, it would be possible to create more powerful inference algorithms
that would cause severe privacy leakage.

When evaluating the position inference algorithm, we shall check whether the results
depend on the road network. For example, a bottleneck edge would add two on-street
parkings likely visited by the vehicles. That would positively offset the positional suc-
cess rate. In our road network, there is a bottleneck between the core part of the town
and the small village-like area at the south of the map. As it is not a central part of the
road network, only a smaller portion of the vehicles take this road. Hence, we assume
its influence is marginal to the final results.

Our final observation is in connection with our previous study [2]. In the Monaco
SUMO Traffic Scenario [15], each vehicle belongs to the random type as no one repeats
its activity chain. Consequently, tracking them in time is more challenging.

5 Conclusion

We can conclude that household vehicles moving during daytime leak the most location
information. Commuters leak time information in an FL system. The random traffic and
the vehicles moving at night leak less private information in an FL training process
aiming to predict parking lot occupancies.

This study also presents that household vehicles’ of those having conventional work-
ing hours and commuter vehicles are easy to track in location (with approximately 80%
and 60% average success rate respectively) and with small uncertainty in time (with an
average of approximately 30 minutes).

Our present paper calls attention to two important observations:

1. Vanilla federated learning in vehicular communication systems leaks significant
privacy-sensitive data.

2. Consequently, when designing vehicular federated learning systems, we shall pro-
vide adequate countermeasures to ensure the users’ privacy also at the applica-
tion level in the OSI model [16].
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[5] L. Codecá, J. Erdmann, and J. Härri, “A SUMO-based parking management framework
for large-scale smart cities simulations,” in 2018 IEEE Vehicular Networking Conference
(VNC), 2018, pp. 1–8. DOI: 10.1109/VNC.2018.8628417.

[6] F. Schaub, Z. Ma, and F. Kargl, “Privacy requirements in vehicular communication sys-
tems,” in 2009 International Conference on Computational Science and Engineering,
vol. 3, 2009, pp. 139–145. DOI: 10.1109/CSE.2009.135.

[7] Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji, and J. Li, “Federated learning for vehic-
ular internet of things: Recent advances and open issues,” IEEE Open Journal of the
Computer Society, vol. 1, pp. 45–61, 2020. DOI: 10.1109/OJCS.2020.2992630.

[8] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-preserving federated learn-
ing: A taxonomy, review, and future directions,” ACM Comput. Surv., vol. 54, no. 6, Jul.
2021, ISSN: 0360-0300. DOI: 10.1145/3460427.

[9] L. Zhu, Z. Liu, and S. Han, Deep leakage from gradients, 2019. arXiv: 1906 . 08935

[cs.LG].
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[15] L. Codecá and J. Härri, “Monaco SUMO traffic (MoST) scenario: A 3D mobility scenario
for cooperative ITS,” in SUMO 2018, SUMO User Conference, Simulating Autonomous
and Intermodal Transport Systems, May 14-16, 2018, Berlin, Germany, Berlin, Germany,
May 2018.

[16] J. Day and H. Zimmermann, “The OSI reference model,” Proceedings of the IEEE, vol. 71,
no. 12, pp. 1334–1340, 1983. DOI: 10.1109/PROC.1983.12775.

92

https://ec.europa.eu/eurostat/web/interactive-publications/demography-2023
https://ec.europa.eu/eurostat/web/interactive-publications/demography-2023
https://doi.org/10.1109/TITS.2023.3247339
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/PROC.1983.12775

	Introduction
	Related literature
	Simulation
	Road network
	Transportation activities
	Parking simulation

	Leaking gradients
	Evaluation methods
	Location inference
	Moving time inference

	Results
	Commuter and random traffic
	Household traffic
	Discussion


	Conclusion



