Interlayer Reinforcement in Shotcrete-3D-Printing
The Effect of Accelerator Dosage on the Resulting Bond Behavior of Integrated Reinforcement Bars
DOI:
https://doi.org/10.52825/ocp.v1i.72Keywords:
Additive Manufacturing in Construction, 3D Concrete Printing, Shotcrete 3D Printing, Interlayer Reinforcement Bars, Pull-out Tests, Micro Level AnalysisAbstract
Additive manufacturing with cement-based materials has recently become increasingly common on construction site. The high degree of freedom in individual geometric shapes, the associated potential for resource-efficient designs, and the high degree of automation could make this technology a milestone in the history of construction industry. Many of the existing manufacturing techniques are initially based on unreinforced concrete. However, for many structural elements, the use of reinforcement is indispensable and therefore the reinforcement integration represents a prerequisite. One promising reinforcement strategy is the use of interlayer reinforcement. This method specifically uses the layered characteristic of the additive manufacturing process by integrating reinforcement between the applied layers. In combination with an adaptive path planning, it is therefore possible to manufacture force-flow-compliant reinforced elements with a minimal increase in process complexity compared to an unreinforced production. However, besides the integration process itself, material-process interactions represent an important research topic. Especially for Shotcrete-3D-Printing, the use of accelerators can significantly change the structural build-up of the applied material and thus effect the bonding ability of the sprayed concrete to the integrated reinforcement element. The present study investigates the effect of accelerator dosage on the bond properties of integrated rebars. The resulting bond is analyzed non-destructively via computed tomography and mechanically by pull-out tests according to RILEM RC6. The results show that the material compaction caused by the sprayed application leads to excellent bond properties. However, by using high accelerator dosages, bond deteriorations can be observed.
Downloads
References
Buswell, R.A.; da Silva, W.L.; Bos, F.P.; Schipper, H.R.; Lowke, D.; Hack, N.; Kloft, H.; Mechtcherine, V.; Wangler, T.; Roussel, N. A process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research 2020, 134. https://doi.org/10.1016/j.cemconres.2020.106068
Wangler, T.; Lloret, E.; Reiter, L.; Hack, N.; Gramazio, F.; Kohler, M.; Bernhard, M.; Dillenburger, B.; Buchli, J.; Roussel, N.; et al. Digital Concrete: Opportunities and Challenges. RILEM Tech Lett 2016, 1, 67. https://doi.org/10.21809/rilemtechlett.2016.16
Reiter, L.; Wangler, T.; Roussel, N.; Flatt, R.J. The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research 2018, 112, 86–95. https://doi.org/10.1016/j.cemconres.2018.05.011
Buswell, R.; Kinnell, P.; Xu, J.; Hack, N.; Kloft, H.; Maboudi, M.; Gerke, M.; Massin, P.; Grasser, G.; Wolfs, R.; et al. Inspection Methods for 3D Concrete Printing. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J.M., Salet, T.A.M., Eds.: Springer International Publishing: Cham, 2020, pp. 790–803. https://doi.org/10.1007/978-3-030-49916-7_78
Kloft, H.; Empelmann, M.; Hack, N.; Herrmann, E.; Lowke, D. Reinforcement strategies for 3D‐concrete‐printing. Civil Engineering Design 2020, 2, 131–139. https://doi.org/10.1002/cend.202000022
Freund, N.; Dressler, I.; Lowke, D. Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J.M., Salet, T.A.M., Eds.: Springer International Publishing: Cham, 2020, pp. 612–621. https://doi.org/10.1007/978-3-030-49916-7_62.
Perrot, A.; Jacquet, Y.; Rangeard, D.; Courteille, E.; Sonebi, M. Nailing of Layers: A Promising Way to Reinforce Concrete 3D Printing Structures. Materials (Basel, Switzerland) 2020, 13. https://doi.org/10.3390/ma13071518
Hass, L.; Bos, F. Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J.M., Salet, T.A.M., Eds.: Springer International Publishing: Cham, 2020, pp. 632–645. https://doi.org/10.1007/978-3-030-49916-7_64
Marchment, T.; Sanjayan, J. Mesh reinforcing method for 3D Concrete Printing. Automation in Construction 2020, 109. https://doi.org/10.1016/j.autcon.2019.102992
Bos, F.P.; Ahmed, Z.Y.; Jutinov, E.R.; Salet, T.A.M. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials (Basel, Switzerland) 2017, 10. https://doi.org/10.3390/ma10111314
Bos, F.P.; Bosco, E.; Salet, T.A.M. Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual and Physical Prototyping 2019, 14, 160–174. https://doi.org/10.1080/17452759.2018.1548069
Ma, G.; Li, Z.; Wang, L.; Wang, F.; Sanjayan, J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials 2019, 202, 770–783. https://doi.org/10.1016/j.conbuildmat.2019.01.008
Hack, N.; Lauer, W.V.; Gramazio, F.; Kohler, M. Mesh Mould: Robotically Fabricated Metal Meshes as Concrete Formwork and Reinforcement. In Proceedings of the 11th International Symposium on Ferrocement and 3rd ICTRC International Conference on Textile Reinforced Concrete 2015.
Kloft, H.; Hack, N.; Mainka, J.; Brohmann, L.; Herrmann, E.; Ledderose, L.; Lowke, D. Additive Fertigung im Bauwesen: erste 3-D-gedruckte und bewehrte Betonbauteile im Shotcrete-3-D-Printing-Verfahren (SC3DP). Bautechnik (96) 2019, 929–938. https://doi.org/10.1002/bate.201900094
Kloft, H.; Empelmann, M.; Oettel, V.; Ledderose, L. 3D Concrete Printing – Production of first 3D Printed Concrete Columns and Reinforced Concrete Columns. BFT International, no. 6 2020, 28–37.
Hack, N.; Bahar, M.; Hühne, C.; Lopez, W.; Gantner, S.; Khader, N.; Rothe, T. Development of a Robot-Based Multi-Directional Dynamic Fiber Winding Process for Additive Manufacturing Using Shotcrete 3D Printing. Fibers 2021, 9, 39. https://doi.org/10.3390/fib9060039
Mechtcherine, V.; Grafe, J.; Nerella, V.N.; Spaniol, E.; Hertel, M. 3D-printed steel reinforcement for digital concrete construction - Manufacture, mechanical properties and bond behaviour. Construction and Building Materials 2018, 125–137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
Müller, J.; Grabowski, M.; Müller, C.; Hensel, J.; Unglaub, J.; Thiele, K.; Kloft, H.; Dilger, K. Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction. Metals 2019, 9, 725. https://doi.org/10.3390/met9070725
Weger, D.; Baier, D.; Straßer, A.; Prottung, S.; Kränkel, T.; Bachmann, A.; Gehlen, C.; Zäh, M. Reinforced Particle-Bed Printing by Combination of the Selective Paste Intrusion Method with Wire and Arc Additive Manufacturing – A First Feasibility Study. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J.M., Salet, T.A.M., Eds.: Springer International Publishing: Cham, 2020, pp. 978–987. https://doi.org/10.1007/978-3-030-49916-7_95
Classen, M.; Ungermann, J.; Sharma, R. Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement. Applied Sciences 2020, 10. https://doi.org/10.3390/app10113791
Kloft, H.; Hack, N.; Lindemann, H.; Mainka, J. Shotcrete 3D Printing (SC3DP) - 3D-Drucken von großformatigen Betonbauteilen. Deutsche Bauzeitschrift 2019, 54 - 57.
Baz, B.; Aouad, G.; Leblond, P.; Al-Mansouri, O.; D’hondt, M.; Remond, S. Mechanical assessment of concrete – Steel bonding in 3D printed elements. Construction and Building Materials 2020, 256. https://doi.org/10.1016/j.conbuildmat.2020.119457
Mechtcherine, V.; Nerella, V.N. Integration der Bewehrung beim 3D-Druck mit Beton. Beton- und Stahlbetonbau 2018, 113, 496–504. https://doi.org/10.1002/best.201800003
Matthäus, C.; Kofler, N.; Kränkel, T.; Weger, D.; Gehlen, C. Interlayer Reinforcement Combined with Fiber Reinforcement for Extruded Lightweight Mortar Elements. Materials (Basel, Switzerland) 2020, 13. https://doi.org/10.3390/ma13214778
Gebhard, L.; Mata-Falcón, J.; Markić, T.; Kaufmann, W. Aligned Interlayer Fibre Reinforcement for Digital Fabrication with Concrete. In Fibre Reinforced Concrete: Improvements and Innovations; Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J., Eds.: Springer International Publishing: Cham, 2021, pp. 87–98. https://doi.org/10.1007/978-3-030-58482-5_8
Dreßler, I.; Freund, N.; Lowke, D. The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing. Materials Journal, Special Issue “Concrete 3D Printing and Digitally-Aided Fabrication” 2020. https://doi.org/10.3390/ma13020374
Neudecker, S.; Bruns, C.; Gerbers, R.; Heyn, J.; Dietrich, F.; Dröder, K.; Raatz, A.; Kloft, H. A New Robotic Spray Technology for Generative Manufacturing of Complex Concrete Structures Without Formwork. Procedia CIRP 2016, 43, 333–338. https://doi.org/10.1016/j.procir.2016.02.107
Kloft, H.; Krauss, H.-W.; Hack, N.; Herrmann, E.; Neudecker, S.; Varady, P.A.; Lowke, D. Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP). Cement and Concrete Research 2020, 134, 106078. https://doi.org/10.1016/j.cemconres.2020.106078
RILEM RC6. Bond test for reinforcement steel: 2. Pull-out test, 1983.
Lootens, D.; Jousset, P.; Martinie, L.; Roussel, N.; Flatt, R.J. Yield stress during setting of cement pastes from penetration tests. Cement and Concrete Research 2009, 39, 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012
Paglia, C.; Wombacher, F.; Böhni, H. Influence of alkali-free and alkaline shotcrete accelerators within cement systems: hydration, microstructure, and strength development. ACI Materials Journal 101 (5) 2004, 353–357.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2022 Niklas Freund, Dirk Lowke
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-01-23
Published 2022-02-15
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers 414265976