Enclosing Reinforcement Structures in Shotcrete 3D Printing
The Effect of Reinforcement Geometry and Accelerator Dosage on the Formation of the Bond Area
DOI:
https://doi.org/10.52825/ocp.v3i.227Keywords:
Additive Manufacturing in Construction, Concrete Printing, Shotcrete 3D Printing, Protruding Rebars, Accelerator, Void Formation, Bond QualityAbstract
Integrating reinforcement into existing concrete 3D printing processes represents one of the key challenges in further automating the additive manufacturing of structural concrete components. A number of different approaches are currently being investigated. In this context, the integration of prefabricated reinforcement structures as well as the process-parallel assembly of reinforcement, e.g. by additive metal arc welding or joining of short rebars, are potential strategies. A common feature of both of these reinforcement strategies is that rebars protrude from the concrete surface in variable orientations during the printing process and need to be enclosed in concrete. Due to the spray application, Shotcrete 3D Printing (SC3DP) offers a good basis for realizing such reinforcement enclosures without the use of specially adapted nozzles. However, it is essential to systematically analyze material properties, e.g. accelerator dosage, and process properties, e.g. reinforcement orientation, in order to define limits for the application. For this reason, the present study investigates the influence of accelerator dosage (0 - 4 %) and reinforcement geometry (spacing, inclination, crossings) on the formation of voids. It is observed that with increasing accelerator dosage, the reinforcement structure increasingly acts as a blocking element for material spreading. The adhesion of the concrete to the reinforcement during spraying creates a shielding effect that increasingly leads to void formation. Finally, the potential and limitations of using prefabricated reinforcement structures in SC3DP are discussed.
Downloads
References
Buswell, R.A.; Bos, F.P.; Da Silva, W.R.L.; Hack, N.; Kloft, H.; Lowke, D.; Freund, N.; Fromm, A.; Dini, E.; Wangler, T.; et al. Digital Fabrication with Cement-Based Materials: Process Classification and Case Studies. In Digital Fabrication with Cement-Based Materials; Roussel, N., Lowke, D., Eds.: Springer International Publishing: Cham, 2022, pp. 11–48, https://doi.org/10.1007/978-3-030-90535-4_2. DOI: https://doi.org/10.1007/978-3-030-90535-4_2
Bos, F.P.; Menna, C.; Pradena, M.; Kreiger, E.; da Silva, W.L.; Rehman, A.U.; Weger, D.; Wolfs, R.; Zhang, Y.; Ferrara, L.; et al. The realities of additively manufactured concrete structures in practice. Cement and Concrete Research 2022, 156, 106746, https://doi.org/10.1016/j.cemconres.2022.106746. DOI: https://doi.org/10.1016/j.cemconres.2022.106746
Kloft, H.; Empelmann, M.; Hack, N.; Herrmann, E.; Lowke, D. Reinforcement strategies for 3D‐concrete‐printing. Civil Engineering Design 2020, 2, 131–139, https://doi.org/10.1002/cend.202000022. DOI: https://doi.org/10.1002/cend.202000022
Mechtcherine, V.; Buswell, R.; Kloft, H.; Bos, F.P.; Hack, N.; Wolfs, R.; Sanjayan, J.; Nematollahi, B.; Ivaniuk, E.; Neef, T. Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cement and Concrete Composites 2021, 119, 103964, https://doi.org/10.1016/j.cemconcomp.2021.103964. DOI: https://doi.org/10.1016/j.cemconcomp.2021.103964
Freund, N.; Lowke, D. Interlayer Reinforcement in Shotcrete-3D-Printing. Open Conf Proc 2022, 1, 83–95, https://doi.org/10.52825/ocp.v1i.72. DOI: https://doi.org/10.52825/ocp.v1i.72
Freund, N.; Dressler, I.; Lowke, D. Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J., Salet, T.A., Eds.: Springer International Publishing: Cham, 2020, pp. 612–621, https://doi.org/10.1007/978-3-030-49916-7_62. DOI: https://doi.org/10.1007/978-3-030-49916-7_62
Kloft, H.; Empelmann, M.; Oettel, V.; Ledderose, L. 3D Concrete Printing – Production of first 3D Printed Concrete Columns and Reinforced Concrete Columns. BFT International, no. 6 2020, 28–37.
Dörrie, R.; Laghi, V.; Arrè, L.; Kienbaum, G.; Babovic, N.; Hack, N.; Kloft, H. Combined Additive Manufacturing Techniques for Adaptive Coastline Protection Structures. Buildings 2022, 12, 1806, https://doi.org/10.3390/buildings12111806. DOI: https://doi.org/10.3390/buildings12111806
DIN EN 1992-1-1:2011-01, Eurocode_2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken_- Teil_1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN_1992-1-1:2004_+ AC:2010; Beuth Verlag GmbH: Berlin, https://dx.doi.org/10.31030/1723945. DOI: https://doi.org/10.31030/1723945
Kloft, H.; Krauss, H.-W.; Hack, N.; Herrmann, E.; Neudecker, S.; Varady, P.A.; Lowke, D. Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP). Cement and Concrete Research 2020, 134, 106078, https://doi.org/10.1016/j.cemconres.2020.106078.Dreßler, I.; Freund, N.; Lowke, D. The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing. Materials Journal, Special Issue “Concrete 3D Printing and Digitally-Aided Fabrication” 2020, https://doi.org/10.3390/ma13020374. DOI: https://doi.org/10.1016/j.cemconres.2020.106078
DIN EN 14488-2:2006-09, Prüfung von Spritzbeton_- Teil_2: Druckfestigkeit von jungem Spritzbeton; Deutsche Fassung EN_14488-2:2006; Beuth Verlag GmbH: Berlin, https://dx.doi.org/10.31030/9710986. DOI: https://doi.org/10.31030/9710986
Lootens, D.; Jousset, P.; Martinie, L.; Roussel, N.; Flatt, R.J. Yield stress during setting of cement pastes from penetration tests. Cement and Concrete Research 2009, 39, 401–408, https://doi.org/10.1016/j.cemconres.2009.01.012. DOI: https://doi.org/10.1016/j.cemconres.2009.01.012
Hack, N.; Kloft, H. Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality: A Real-Scale Demonstrator. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J., Salet, T.A., Eds.: Springer International Publishing: Cham, 2020, pp. 1128–1137, https://doi.org/10.1007/978-3-030-49916-7_107. DOI: https://doi.org/10.1007/978-3-030-49916-7_107
Maboudi, M.; Gerke, M.; Hack, N.; Brohmann, L.; Schwerdtner, P.; Placzek, G. Current Surveying Methods for the Integration of Additive Manufacturing in the Construction Process. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-763-2020. DOI: https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-763-2020
Lachmayer, L.; Dörrie, R.; Kloft, H.; Raatz, A. Process Control for Additive Manufacturing of Concrete Components. In Third RILEM International Conference on Concrete and Digital Fabrication; Buswell, R., Blanco, A., Cavalaro, S., Kinnell, P., Eds.: Springer International Publishing: Cham, 2022, pp. 351–356, https://doi.org/10.1007/978-3-031-06116-5_52. DOI: https://doi.org/10.1007/978-3-031-06116-5_52
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2023 Niklas Freund, Robin Dörrie, Martin David, Harald Kloft, Klaus Dröder, Dirk Lowke
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-05-30
Published 2023-12-15