A Lightweight Approach to FDOs via Bioschemas, RO-Crate and Signposting on GitHub Pages
DOI:
https://doi.org/10.52825/ocp.v5i.1188Keywords:
RO-Crate, Signposting, Research Metadata, FDOAbstract
Here we present a proof-of-concept using Bioschemas, RO-Crate and Signposting as a lightweight approach to FDOs describing research outcomes exposed on GitHub pages. Research artifacts produced by a research and development team, namely the SemTec team at ZB MED, are exposed via GitHub pages and enriched with structured metadata using schema.org and Bioschemas. Research artifacts corresponding to the same research project are put together in an RO-Crate. Signposting is used on the GitHub landing pages. The combination of these three elements facilitates rich FAIR metadata for research artifacts.
Downloads
References
Soiland-Reyes S, Sefton P, Crosas M, Castro LJ, Coppens F, Fernández JM, et al. Pack-aging research artefacts with RO-Crate. Data Science. 2022; 1–42. doi:10.3233/DS-210053
Guha RV, Brickley D, Macbeth S. Schema.org: evolution of structured data on the web. Commun ACM. 2016;59: 44–51. doi:10.1145/2844544
Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3: 160018. doi:10.1038/sdata.2016.18
Barker M, Chue Hong NP, Katz DS, Lamprecht A-L, Martinez-Ortiz C, Psomopoulos F, et al. Introducing the FAIR Principles for research software. Sci Data. 2022;9: 622. doi:10.1038/s41597-022-01710-x
Goble C, Cohen-Boulakia S, Soiland-Reyes S, Garijo D, Gil Y, Crusoe MR, et al. FAIR Computational Workflows. Data Intelligence. 2020;2: 108–121. doi:10.1162/dint_a_00033
Gray AJG, Goble C, Jimenez RC. From Potato Salad to Protein Annotation. ISWC Posters and Demo session. Vienna, Austria; 2017. p. 4. Available: http://ceur-ws.org/Vol-1963/paper579.pdf
Van de Sompel H. FAIR Digital Objects and FAIR Signposting. 2023 May 27. doi:10.5281/zenodo.7977333
Soiland-Reyes S, Sefton P, Castro LJ, Coppens F, Garijo D, Leo S, et al. Creating light-weight FAIR Digital Objects with RO-Crate. Research Ideas and Outcomes. Pensoft Pub-lishers; 2022. p. e93937. doi:10.3897/rio.8.e93937
Castro LJ, Soiland-Reyes S, Rebholz-Schuhmann D. RO-Crates meets FAIR Digital Ob-jects. 2023 Sep 15. doi:10.5281/zenodo.8348924
De Smedt K, Koureas D, Wittenburg P. FAIR Digital Objects for Science: From Data Piec-es to Actionable Knowledge Units. Publications. 2020;8: 21. doi:10.3390/publications8020021
Lannon L, Peters-von Gehlen K, Anders I, Pfeil A, Schlemmer A, Trautt Z, et al. FDO Fo-rum FDO Configuration Types. 2022 [cited 8 Dec 2023]. doi:10.5281/zenodo.7825703
Solanki D, Quiñones N, Rebholz-Schuhmann D, Castro LJ. MLentory, an FDO registry for machine learning models - Poster. Poster presented at: SWAT4HCLS 2024; PUBLISSO FRL; 2024. doi:10.4126/FRL01-006473259
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Rohitha Ravinder, Nelson Quiñones, Dietrich Rebholz-Schuhmann, Leyla Jael Castro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers 460234259 -
European Commission
Grant numbers 101057344