FAIR Digital Objects for Seamless Research Data Management for Researchers and Higher Education Institutions
DOI:
https://doi.org/10.52825/ocp.v5i.1045Keywords:
FAIR Digital Objects (FDO), Research Object Crates (RO-Crates), Machine Actionable Data Management Plans (maDMP), Research Data ManagementAbstract
Seamless Research Data Management for Researchers aims to cover a complete scientific workflow from planning a research project to registration and publication of results in repositories by connecting existing components, services, and tools using FDOs. This approach combines widely used components, so large data volumes can increasingly be FAIRified automatically. Machine-actionable Data Management Plans (maDMP) that comprehensively document the respective research project in a machine-actionable format form the entry point. The familiar Galaxy environment, which already enables RO-Crate implementation, forms the backbone to incorporate a growing number of services and tools. Galaxy orchestrates and executes the workflow components resulting from maDMPs and data analysis. The research results and comprehensive documentation become published in a repository of the researchers' choice (e.g., Zenodo). From there, the research results can be integrated into a knowledge graph (e.g., ORKG).
Downloads
References
Soiland-Reyes, S., Sefton, P., Castro, L.J., Coppens F., Garijo, D., Leo, S., Portier, M., & Groth, P. (2022). Creating lightweight FAIR Digital Objects with RO-Crate. 1st Interna-tional Conference on FAIR Digital Objects (FDO 2022) (Poster). Research Ideas and Outcomes 8:e93937. https://doi.org/10.3897/rio.8.e93937. https://s11.no/2022/phd/fdo-with-ro-crate/
The CWFR Group (2020). Canonical Workflow Framework for Research. CWFR - Posi-tion Paper – Version 2. Eds.: A. Hardisty & P. Wittenburg. https://orca.cardiff.ac.uk/id/eprint/142465/3/CWFR-position-paper-v3.pdf
Betz, D., Biniossek, C., Blanchi, C., Henninger, F., Lauer, T., Wieder, P., Wittenburg, P., & Zünkeler, M. (2022). Canonical Workflow for Experimental Research. Data Intelligence, 4 (2): 155–172. https://doi.org/10.1162/dint_a_00123
Jeffery, K., Wittenburg, P., Lannom, L., Strawn, G., Biniossek, C., Betz, D., & Blanchi, C. (2021). Not Ready for Convergence in Data Infrastructures. Data Intelligence, 3 (1): 116–135. https://doi.org/10.1162/dint_a_00084
Miksa, T., Suchánek, M., Slifka, J., Knaisl, V., Ekaputra, F. J., Kovacevic, F., Ningtyas, A. M., El-Ebshihy, A. M., & Pergl, R. (2023). Towards a Toolbox for Automated Assess-ment of Machine-Actionable Data Management Plans. Data Science Journal, 22, Article 28. https://doi.org/10.5334/dsj-2023-028
Stocker, M., Oelen, A., Jaradeh, M. Y., Haris, M., Oghli, O. A., Heidari, G., Hussein, H., Lorenz, A.-L., Kabenamualu, S., Farfar, K. E., Prinz, M., Karras, O., D’Souza, J., Vogt, L., & Auer, S. (2023). FAIR scientific information with the Open Research Knowledge Graph. In B. Magagna (Ed.), FAIR Connect (Vol. 1, Issue 1, pp. 19–21). IOS Press. https://doi.org/10.3233/fc-221513
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Markus Stocker, Björn Grüning, Tomasz Miksa, Claudia Biniossek, Dirk Betz

This work is licensed under a Creative Commons Attribution 4.0 International License.