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Abstract: The increasing capabilities of Large Language Models (LLMs) have opened
new opportunities for enhancing Ontology Learning (OL), a process crucial for structur-
ing domain knowledge in a machine-readable format. This paper reports on the partic-
ipation of the RWTH-DBIS team in the LLMs4OL Challenge at ISWC 2024, addressing
two primary tasks: term typing and taxonomy discovery. We used LLaMA-3-8B and
GPT-3.5-Turbo models to find the performance gaps between open-source and com-
mercial LLMs. For open-source LLMs, our methods included domain-specific continual
training, fine-tuning, and knowledge-enhanced prompt-tuning. These approaches were
evaluated on the benchmark datasets from the challenge, i.e., GeoNames, UMLS,
Schema.org, and the Gene Ontology (GO), among others. The results indicate that
domain-specific continual training followed by task-specific fine-tuning enhances the
performance of open-source LLMs in these tasks. However, performance gaps remain
when compared to commercial LLMs. Additionally, the developed prompting strategies
demonstrate substantial utility. This research highlights the potential of LLMs to au-
tomate and improve the OL process, offering insights into effective methodologies for
future developments in this field.

Keywords: Ontology Learning, Large Language Models, Domain-specific Continual
Learning, Knowledge-enhanced Prompt-tuning, Hierarchical Text Classification

1 Introduction

In the context of the Semantic Web community, an ontology is a formal representation
of a set of concepts and the relationships between those concepts of shared con-
ceptualizations of a domain of interest, shared by a group of people within a certain
domain [1], [2]. It is often considered as a source of semantics and interoperability
and used to model domain knowledge in a structured, machine-readable format. On-
tology Learning (OL) refers to the process of automatic or semi-automatic creation of
ontologies from text, including the extraction of terms and concepts, the extraction re-
lationships, axiom and evaluation [3].
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The recent success of OpenAI’s Generative Pre-trained Transformer (GPT) has demon-
strated the enormous capabilities of Large Language Models (LLMs) in natural lan-
guage understanding and generation. LLMs have shown proficiency in various tasks,
including machine translation, summarization, question-answering, and more recently,
and now open new opportunities for enhancing OL processes, a domain-specific task.
LLMs4OL [4] defines six key activities in OL including corpus preparation, terminology
extraction, including term typing, taxonomy construction, relation extraction, and axiom
discovery. The LLMs4OL Challenge ISWC 2024 [5] introduces three tasks of con-
ceptualization (term typing, taxonomy construction, and relation extraction) and aims
to explore and harness the potential of LLMs in OL within the context of the Semantic
Web. It seeks to foster innovation and collaboration in the development of scalable and
precise methods. This paper presents a technical report on our participation in the
challenge.

1.1 Tasks Performed

In this study, we addressed two primary tasks defined by the LLMs4OL Challenge:

• Task A - Term Typing: Discover the generalized type for a lexical term.
• Task B - Taxonomy Discovery: Discover the taxonomic hierarchy between type

pairs.

1.2 Main Objectives of Experiments

The primary objectives of our experiments were to assess the effectiveness of both
open-source and commercial LLMs in tasks such as term typing and taxonomy dis-
covery. Our research is centered around the following research questions, which are
guiding the design of our experiments and the subsequent analysis of the results:

1. Comparing the Performance of Commercial and Open-Source Models: How
do existing commercial models stack up against open-source models in terms of
performance on the tasks defined in this competition? This question is aimed
at evaluating the strengths and limitations of different models when applied to
domain-specific challenges.

2. Enhancing Open-Source Models through Training Methods: Can the perfor-
mance of open-source models be improved through the application of various
training methods? This question explores whether targeted training strategies
can narrow the performance gap between commercial and open-source models
in these tasks.

2 Background and Related Work

For both tasks in the challenge, our research focuses on the following topics: Unsuper-
vised Continual Learning and Knowledge-enhanced Prompt-tuning.

Unsupervised Continual Learning

Unsupervised continual learning (UCL) focuses on the ongoing training of models using
unlabeled data, a technique that has shown considerable success across various fields.
In the continual pre-training scenario, models are first pre-trained on a large corpus of
general text and then further pre-trained on domain-specific data to better adapt to
new domains. This method has led to significant performance improvements for tasks
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within new domains. For instance, Gururangan et al. [6] explored the effectiveness of
domain-adaptive pre-training for NLP models. Their study demonstrated that continual
pre-training on domain-specific data could significantly enhance the performance of
downstream tasks, even when the amount of data is limited. Additionally, researchers
such as Ke et al. [7], Scialom et al. [8], and Han et al. [9] formalized the continual
pre-training scenario. They proposed pre-training strategies that effectively retain and
transfer knowledge, thereby improving the generalization capabilities of the models.
Their work also yielded promising results in the field of natural language processing
(NLP).

The study of continual learning in large language models (LLMs) is still evolving. Wu
et al. [10], wang et al. [11], and shi et al. [12] provided a comprehensive survey on
continual learning for LLMs, emphasizing the necessity for regular updates to keep the
models current with evolving knowledge and skills. Those studies show that continual
pre-training and unsupervised continual learning offer promising avenues for enhancing
the adaptability and performance of models in language domains. Therefore, we will
develop our own continuous pre-training scheme based on the contextual information
collected from the domain of the provided training data.

Knowledge-enhanced Prompt-tuning

The integration of external knowledge into prompt-tuning methods has shown promis-
ing results in enhancing the performance of few-shot learning models. Traditional
prompt-tuning approaches often struggle with tasks requiring domain-specific knowl-
edge due to their reliance on general-purpose language models pre-trained on vast but
generic datasets [13]. To address these limitations, several studies have explored the
incorporation of structured and unstructured knowledge into prompt-tuning frameworks.
Lu et al. [14] proposed the Medical Knowledge-enhanced Prompt Learning (MedKPL)
model to improve diagnosis classification from clinical text. MedKPL leverages both
structured knowledge from medical knowledge graphs and unstructured knowledge
from online resources, integrating them into the prompt templates. The model demon-
strated superior performance in standard and low-resource settings, showcasing its
robustness and transferability across different medical departments. Similarly, liu et
al. [15] introduced the Structured Knowledge Prompt Tuning (SKPT) method, which
enhances prompt learning by embedding structured knowledge directly into the prompt
sequences. This approach utilizes open information extraction to generate knowledge
triples, which are then incorporated into the prompt templates. SKPT has shown ef-
fectiveness in few-shot text classification tasks, outperforming traditional methods on
benchmark datasets.

These advancements highlight the potential of knowledge-enhanced prompt-tuning
to address the challenges of domain-specific tasks in NLP. By integrating external
knowledge into prompt templates, these methods not only improve model performance
but also enable better generalization to unseen data and low-resource scenarios.

3 Methods

In this section, we detail the methodologies employed in our approach to the LLMs4OL
Challenge at ISWC 2024. Our approach depicted in Figure 1 is structured into three
main stages data augmentation, model training, and inference. Each stage involves
specific techniques and processes designed to optimize the performance of LLMs in
term typing and taxonomy discovery.
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Figure 1. Overview of Research Methodology

3.1 Data Augmentation for Terms and Types

We participated in both Task A and Task B of the competition, each of which provided a
set of ontologies [16]. Task A included the ontologies WordNet [17], GeoNames [18],
UMLS [19], and GO [20]. The training data for Task A comprised three components: an
optional context sentence (available only for WordNet), a lexical term, and a conceptual
term type (provided as a list if the term could be assigned multiple types). In contrast,
the test dataset for Task A only provided the optional context sentence (again, only for
WordNet) and the lexical term.

Task B included the ontologies GeoNames [18], UMLS [19], GO [20], and Schema.org
[21]. The training data for Task B was structured as pairs of types in the format {Ta, Tb},
where Ta represents the parent (superclass) and Tb represents the child (subclass).
The test dataset for Task B provided only a series of types, requiring us to identify pairs
with an ”is-a” relationship among them.

During model training, we collected contextual information for terms and types us-
ing three methods described in this section, based on the data provided in the train-
ing datasets. Notably, for GeoNames [18], we gathered contextual information for all
types and terms that appeared in both the Task A and Task B training datasets. For
Schema.org [21], we collected information for all types present in both the training and
test datasets of Task B. For UMLS [19] and GO [20], we collected contextual informa-
tion only for the types found in the Task B training dataset. No contextual information
was collected for WordNet [17].

3.1.1 Data Collection from Wikipedia

We search for term or type descriptions through publicly available sources, such as
Wikipedia. We utilize the Wikipedia API [22] to retrieve relevant term definitions by
sending HTTP requests and parsing the returned JSON data. After obtaining the raw
content, we perform data cleaning to remove irrelevant or redundant information, ensur-
ing the data is more standardized and structured. The specific cleaning steps include:

• Filtering Parser Instructions: Use regular expressions to match and remove
magic words such as ” NOTOC ” that control page content display and behavior
but are not useful for our training purposes.

• Filtering File/Image Links: Remove file or image links starting with File, Image,
or Media.

• Filtering References and Tables: Remove content within ”ref” and ”table” tags.
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• Handling Category Links: Retain category links but remove the category pre-
fixes.

• Merging and Cleaning Content: Combine various parts of the content and re-
move extra line breaks and whitespace characters.

This data collection and cleaning process ensures that the data obtained from Wikipedia
is of high quality and consistency. The cleaned content is used for subsequent data
analysis and model training. It is also suitable for collecting the definitions of various
types.

3.1.2 Data Collection using Commercial Language Models

We employ commercial large language models with network search capabilities to col-
lect a large amount of term-related information required for training, such as OpenAI’s
GPT-4o [23], Anthropic’s Claude-3 [24], and Microsoft’s Copilot [25]. We use zero-shot
prompting to access these models through their API interfaces, and after cleaning the
returned data, it is used as training data to enrich the contextual information of terms
and types. Figure 2 demonstrates the example prompt we used to collect context infor-
mation for the GeoNames dataset.

Inference Prompt

Here is a geographical term: ”{name}”. Translate the given geographical term into En-
glish. Provide geographical information in plain text without any markdown formatting or
reference links. Ensure that all provided information is useful for discovering implicit re-
lationships with other geographical terms. Do not include the relationships in the result.

Figure 2. Template used to prompt commercial LLMs to generate relevant information about terms in
dataset GeoNames.

As an example, we present a data entry from the GeoNames training dataset for a
given term: ”Cascade Bluff”. Using the prompt provided above, we obtained the follow-
ing response from GPT-3.5-Turbo: ”Cascade Bluff is a geographical location that can
be translated into English. It is a place characterized by steep slopes or cliffs formed
by the cascading of water. The term ”Cascade” refers to the manner in which water
descends rapidly and forcefully, creating a series of small waterfalls or a large waterfall.
”Bluff” indicates a high, steep, or vertical cliff or bank. Geographically, Cascade Bluff is
likely to be situated near a body of water, such as a river, where the cascading effect
is prominent. It could be part of a hilly or mountainous region with pronounced cliffs or
bluffs.”

3.1.3 Direct Access to Ontology Data Sources

We accessed the ontology data sources associated with the datasets directly through
their provided APIs or by downloading their datasets. This allowed us to retrieve and
store contextual information pertinent to the training data. The contextual information
refers to the explanatory text descriptions of the terms and types included in the training
set, as provided within the ontology datasets. For instance, in the case of the type
”lake”, we extracted the following descriptive explanation from the GeoNames [18]: ”a
large inland body of standing water”. The datasets utilized include GeoNames [18],
UMLS [19], GO [20], and Schema.org [21].
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3.2 Model Continual Learning

3.2.1 Domain-specific Continual Training

This approach involves domain-specific continual training of the selected open-source
model. We enriched the training data using the context information for terms and types
obtained through the method described in Section 3.1. For the GeoNames dataset, we
collected context information for all terms and types present in the training datasets of
Task A and Task B. For other datasets, we collected only the context information for
types.

Figure 3 we present the training prompts constructed using type information alone
and using both type and term information. These texts were used to train the model
in a CausalLM manner. An analysis of the types contained in the GeoNames dataset
reveals that there are 9 level-1 types and 671 level-2 types. In the prompt template
provided below, ”L2” represents the type of the term from the training dataset, while
”L1” denotes the super-type of that type.

Training Prompts

# Prompt using type information alone

Type: ”{type name}”, {type info}

# Prompt using both type and term information

The term ”{term}” from the GeoNames dataset. {term info}. It falls under
the top-level classification of ”{L1}”. Given this description, it can be logically
inferred that ”{term}” should belong to the specific sub-category ”{L2}” within
this top-level classification.”{L2}” is described as: {L2 info}. Based on this
inference, the type of this term is determined to be ”{L2}”.

Figure 3. Template of training prompts for Method A

3.2.2 Fine-tuning

This method describes the fine-tuning of an open-source LLM for a specific task, aimed
at addressing the downstream task of Sequence Classification. We employed different
training strategies for Task A and Task B.

Task A

We started with the training data provided by the competition, which included terms
and their corresponding types. The objective was to transform this data into a format
suitable for model training. Specifically, we assigned a unique numerical label to each
type and created a new dataset comprising these labels and their corresponding terms.
We then fine-tuned the model using this processed data.

Task B

We begin with the training data provided by the challenge, which included a hierarchical
parent-child relationship. First, we needed to transform these hierarchical relationships
into a data format suitable for model training. Specifically, we generated textual de-
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scriptions and context information for each relationship and assigned a label of 1 to
these positive samples. To enable the model to distinguish between correct and in-
correct hierarchical relationships, we constructed negative samples by reversing the
parent and child entities and assigning a label of 0 to these negative samples. Finally,
we combined the positive and negative samples to create the final training dataset.
Below are data samples from the dataset for GeoNames [18]. We then fine-tuned the
model using this processed data.

Task B Data Processing

# Unprocessed Training Data

”parent”: ”mountain, hill, rock”,
”child”: ”karst area”

# Processed Prompts

”{parent} is the superclass / parent / supertype / ancestor class of {child},
They are two geographical terms. ’{parent}’: {parent info} ’{child}’: {child info}”

”{child} is the subclass / child / subtype / descendant class of {parent}, They are two
geographical terms. ’{parent}’: {parent info} ’{child}’: {child info}”

Figure 4. Data Processing Example for Method B - Task B

3.2.3 Domain-specific Continual Training Followed by Task-specific Fine-tuning

First, we performed unsupervised continual training on the specific dataset using the
method described in Section 3.2.1. Next, we further fine-tuned the model for the spe-
cific task using the approach outlined in Section 3.2.2. The methods and training texts
used in the phased training process were consistent with those previously described.

3.3 Prompting

We experimented with various prompts and ultimately selected the ones that demon-
strated the best performance for the challenge. Below, we provide the templates for
these prompts, each specifically designed for different tasks and models:

1. Prompt template for inference using GPT-3.5, applicable to all datasets in
Task A: ”You are provided with a term: ’{term}’ from the {dataset name}, {short
description about dataset}. Based on the information you have and can find on the
internet, provide only the most likely type for this term. This type is strictly defined
within the following list: {type list}. You must only give me the type. Nothing else.”
Here, {type list} represents the set of all types that appear in the training dataset
for Task A’s {dataset name}.

2. Prompt template for inference using GPT-3.5, specifically for the GeoNames
dataset in Task A: The GeoNames dataset contains 9 level-1 types and 671
level-2 types. First, GPT determines which of the 9 level-1 types the term belongs
to. Then, based on the first result, GPT infers which level-2 type under the identi-
fied level-1 type the term belongs to. The prompts used for these inferences are
similar to those described previously, with the key difference being the {type list}
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provided in the prompt, which varies according to the hierarchical level being in-
ferred.

3. Prompt template for inference using the model trained with Method A (Sec-
tion 3.2.1), specifically for the GeoNames dataset in Task A: ”The term ’{term}’
from the GeoNames dataset.” The generated text needs to extract the type infor-
mation following the keyword ”sub-category” using a regular expression, and this
type information is returned as the result.

4. Prompt template for inference using the model trained with Method B (Sec-
tion 3.2.2), applicable to the UMLS and GO datasets in Task A: Use the term
directly from the test data.

5. Prompt template for inference using the model trained with Method B (Sec-
tion 3.2.2), specifically for the GeoNames dataset in Task B: ”{parent} is the
superclass of {child}.” Here, {parent} and {child} are paired combinations from
the type list provided in the test data.

6. Prompt template for inference using the model trained with Method C (Sec-
tion 3.2.2), applicable to the GeoNames and Schema datasets in Task B: Use
the prompt provided in the fifth point above.

4 Evaluation

In this section, we present the evaluation of our approach to term typing and taxonomy
discovery as part of the LLMs4OL Challenge at ISWC 2024. The evaluation focuses
on assessing the performance of our models in accurately classifying terms and con-
structing taxonomic hierarchies.

4.1 Experimental Setup

The evaluation was conducted on datasets provided for the LLMs4OL challenge, con-
sisting of diverse sets of terms and their corresponding types and hierarchical relation-
ships, mentioned in the previous section.

We mainly use the Hugging Face transformers library for the implementation, which
provides robust tools for training and deploying state-of-the-art large language mod-
els, and the pre-trained model from Hugging Face model repository meta-llama/Meta-
Llama-3-8B. The model training and inference were conducted on a high-performance
server equipped with four NVIDIA H100 80GB GPUs. The duration of training depends
on the size of the training data. For instance, using the GeoNames dataset from Task A,
which contains 8,078,865 terms and approximately 6 GB of extracted contextual infor-
mation, training on 4 GPUs for 5 epochs takes around 200 hours to complete. Training
hyper-parameters are the following:

• Learning Rate: 2× 10−5

• Batch Size: 16 samples per device
• Number of Epochs: 5 (for each mentioned training method)
• Weight Decay: 0.01
• Mixed Precision Training: Enabled (fp16)
• Gradient Accumulation: Accumulate gradients over 4 steps
• Optimizer: AdamW

The learning rate is a critical hyper-parameter that controls the step size during the
update of model weights. In each back-propagation step, the model adjusts its weights
according to the gradient of the loss function, with the learning rate determining the
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magnitude of these adjustments. Batch size refers to the number of samples input
into the model during each training iteration. The number of epochs represents the
number of complete passes through the training dataset. One epoch consists of a
single forward and backward pass through the entire training dataset.

Weight decay is a regularization technique designed to prevent over-fitting by con-
straining the magnitude of model weights. It achieves this by adding the L2 norm of the
weights to the loss function, thereby penalizing excessively large weights and discour-
aging overly complex models. The strength of this penalty is controlled by the weight
decay parameter.

Mixed precision training [26] involves using 16-bit floating-point numbers (fp16) in-
stead of 32-bit floating-point numbers (fp32) to represent model parameters and gra-
dients during training. This approach can significantly reduce memory usage and in-
crease computational speed with minimal impact on the final model performance.

Gradient accumulation is a technique employed to achieve larger effective batch
sizes when memory resources are limited. Specifically, instead of updating the model
weights after each forward pass, the gradients are accumulated over multiple itera-
tions (in this case, four) and then used to update the weights. This method allows for
the benefits of larger batch sizes, such as more stable gradient estimates, without the
need for additional memory .

The AdamW optimizer [27] is a variant of the Adam optimizer [28] that improves upon
the original by decoupling weight decay from the gradient update process, thereby
mitigating the bias introduced by L2 regularization. AdamW combines the advantages
of momentum methods and adaptive learning rate adjustments, making it particularly
well-suited for training large-scale models.

4.2 Results

Table 1 and Table 2 present the evaluation results for our participation in the sub-tasks
of Task A and Task B, respectively. The numbers in parentheses indicate our ranking for
each metric among all participating teams in the corresponding sub-task. The results
in Table 1 were obtained by evaluating GPT using the prompts provided in Section 3.3
for inference. Similarly, the results in Table 2 were derived by applying the prompts
from Section 3.3 for inference on the Llama-3-8B model, which was trained using the
approach described in Section 3.2.3 for Task B.

Table 1. Results on Task A

Subtasks F1 Score Precision Recall

A.1-WordNet 0.9446 (4) 0.9446 (4) 0.9446 (4)
A.2-GeoNames 0.4355 (3) 0.4355 (3) 0.4355 (2)
A.3-UMLS (NCI) 0.1691 (4) 0.1821 (4) 0.1579 (4)
A.3-UMLS (MEDCIN) 0.4566 (4) 0.4607 (3) 0.4526 (4)
A.3-UMLS (SNOMEDCT US) 0.4747 (4) 0.4888 (3) 0.4613 (4)
A.4-GO (Biological Process) 0.0881 (3) 0.0693 (4) 0.1207 (2)
A.4-GO (Cellular Component) 0.2178 (2) 0.1846 (2) 0.2656 (1)
A.4-GO (Molecular Function) 0.1418 (2) 0.1670 (2) 0.1231 (4)
A.5-DBpedia 0.4270 (1) 0.4270 (1) 0.4270 (1)
A.6-FoodOn 0.8068 (1) 0.8068 (1) 0.8068 (1)
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Table 2. Results on Task B Dataset

Subtasks F1 Score Precision Recall

B.1-GeoNames 0.3409 (2) 0.2400 (2) 0.5882 (3)
B.2-Schema.org 0.5733 (2) 0.5475 (1) 0.6016 (2)

Next, we will provide a detailed comparison of the performance of GPT-3.5-Turbo-
0125 (referred to as G) and the Llama-3-8B model, which was trained using various
methods, across the UMLS, GO, Schema.org, and GeoNames datasets. The compar-
ative results are presented as follows:

4.2.1 Comparison of Training Methods for Task A

GeoNames Dataset

The Table 3 presents the performance comparison between two models, GPT-3.5-
Turbo and Trained Llama-3-8B, on the GeoNames dataset in terms of F1 Score, Pre-
cision, and Recall. The Llama-3-8B model was trained using the method described in
Section 3.2.1, which enriched the training data with context information for terms and
types. Although the results show that GPT-3.5-Turbo outperforms trained Llama-3-8B
across all metrics, considering the parameter sizes of the two models, it is evident that
our training method is highly effective.

Table 3. Results on Task A Dataset GeoNames

Methods F1 Precision Recall

GPT-3.5-Turbo 0.4355 0.4355 0.4355
Llama3-8B 0.40396 0.40396 0.40396

UMLS and GO Datasets

Table 4 and Table 5 show that GPT-3.5-Turbo outperforms the Llama-3-8B model, fine-
tuned using the method described in Section 3.2.2 for Task A, across all datasets in
terms of F1 score, precision, and recall. The Llama-3-8B model, trained using only
term textual information without providing context, performed poorly on downstream
tasks. Additionally, the evaluation results for the UMLS dataset are generally better
than those for the GO dataset. This discrepancy may be due to the fact that terms
in the GO dataset can be assigned to a larger number of types, whereas our prompt
method identifies only the most likely type.

Table 4. Results on Task A for Dataset UMLS. Method G for GPT-3.5-Turbo and F for Fine-tuned Llama3-
8B using Method in Section 3.2.2 for Task A

Methods
NCI MEDCIN SNOMEDCT US
F1 P R F1 P R F1 P R

G 0.1691 0.1821 0.1579 0.4566 0.4607 0.4526 0.4747 0.4888 0.4613
F 0.0017 0.0018 0.0016 0.0001 0.0001 0.0001 0.0048 0.0050 0.0047
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Table 5. Results on Task A for Dataset GO. Method G for GPT-3.5-Turbo and F for Fine-tuned Llama3-
8B using Method in Section 3.2.2 for Task A

Methods
BP CC MF
F1 P R F1 P R F1 P R

G 0.0881 0.0693 0.1207 0.2178 0.1846 0.2656 0.1418 0.167 0.1231
F 0.0022 0.0027 0.0018 0.0017 0.0021 0.0015 0.0014 0.0016 0.0011

4.2.2 Comparison of Training Methods for Task B

GeoNames and Schema.org Datasets

The Table 6 presents the performance of the same model (Llama-3-8B) trained using
two different methods. Method F refers to the fine-tuning approach described in Sec-
tion 3.2.2 for Task B, which is training a model using textual descriptions and context
information for each relationship extracted from the training dataset, while Method P-F
refers to the training approach described in Section 3.2.3 for Task B, which is domain-
specific continual training followed by task-specific fine-tuning. By comparison, it is
evident that the model’s performance on this task significantly improves after training
with Method P-F. The submitted results showed in Table 7 for the Schema.org dataset
were also obtained after training with Method P-F. This method appears to enhance the
model’s capacity to generalize across different datasets, particularly in tasks requiring
a nuanced understanding of context and relationships, as evidenced by the improved
F1 scores, precision, and recall on the GeoNames and Schema.org datasets. These
findings underscore the importance of incorporating domain-specific knowledge and
tailored training strategies to improve the performance of large language models in
specialized tasks.

Table 6. Results for Methods F and P-F on Task B Dataset GeoNames

Methods F1 Score Precision Recall

F 0.183796 0.12199 0.372549
P-F 0.3409 0.24 0.5882

Table 7. Results for Methods P-F on Task B Dataset Schema.org

Methods F1 Score Precision Recall

P-F 0.5733 0.5475 0.6016

4.3 Discussion

The results demonstrate that GPT-3.5-Turbo (G) outperforms the Llama-3-8B model
fine-tuned for Task A across the UMLS, GO, and GeoNames datasets. This suggests
that GPT-3.5-Turbo is more effective in handling the diverse and complex semantic
structures present in these datasets. One possible reason for this superior performance
is GPT-3.5’s inherent ability to leverage a broader contextual understanding, which is
crucial for accurately disambiguating terms and relationships in datasets such as UMLS
and GO.

In Task B, our initial submission yielded suboptimal evaluation scores. To improve
performance, we re-ran the inference process and subsequently ranked the logits
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scores of the outputs in descending order. Specifically, we selected the top 500 re-
sults for the GeoNames dataset and the top 400 results for the Schema.org dataset.
Upon resubmission, we observed a marked improvement in the evaluation scores. This
enhancement is likely due to our revised approach to handling the output data. During
the inference process, we paired the types provided in the test dataset in all possi-
ble combinations, similar to constructing a matrix. However, because the ground truth
labels are sparsely distributed within this matrix, the model we trained produced a rel-
atively high number of false positives (FP) in its predictions. By refining our submission
to include only the top-ranked results, we effectively reduced the number of FPs, which
led to an overall improvement in the evaluation metrics. The accompanying Table 8 and
Table 9) present a comparison of the evaluation results before and after implementing
this top-ranking selection approach.

Table 8. Results for All and Top 500 Predictions on GeoNames

Methods F1 Score Precision Recall

All 0.2125 0.1226 0.7941
Top 0.3409 0.24 0.5882

Table 9. Results for All and Top 400 Predictions On Schema.org

Methods F1 Score Precision Recall

All 0.4653 0.3299 0.7890
Top 0.5733 0.5475 0.6016

Another notable observation from the results is the discrepancy in performance be-
tween the UMLS and GO datasets. GPT-3.5-Turbo achieves better evaluation metrics
on the UMLS dataset compared to the GO dataset. This difference could be attributed
to the nature of the datasets themselves. UMLS terms tend to have fewer associated
types, making it easier for models to accurately classify them. In contrast, GO terms
can be assigned to multiple types, leading to a more challenging classification task. Our
prompt-based method, which identifies the most likely type, may not be fully equipped
to handle the multiplicity of types in the GO dataset, resulting in lower performance
metrics. This suggests that future work should explore prompt engineering techniques
or model architectures that can more effectively address multi-label classification tasks.

5 Future Work

Building on the findings of this study, we offer the following recommendations for future
research and development. These suggestions aim to enhance the performance of
open-source LLMs in the two tasks addressed in this work:

Comprehensive Context Gathering for Task A

For future studies of Task A, we plan to collect comprehensive contextual information
for all terms and types within the UMLS and GO datasets. Leveraging this data, we
intend to train open-source models using Method P-F (as detailed in Section 3.2.3)
and subsequently evaluate their performance. This approach will allow us to assess
the impact of enriched context on model accuracy and effectiveness.
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Hierarchical Training of Classifiers

We propose a hierarchical training approach for classifiers based on type hierarchies.
Specifically, for datasets with multiple levels of types, such as those with 9 top-level
categories and corresponding subcategories, we will first train classifiers for the top-
level categories and then separately for the subcategories. The performance of this
hierarchical approach will be compared to that of a single classifier trained on all types
to evaluate the benefits and limitations of each method.

Advancing Prompting

Enhancing prompt engineering strategies for both GPT-3.5-turbo-0125 and Llama-3-
8B could lead to improved performance across a wider range of tasks. One potential
strategy involves incorporating feedback loops to continuously optimize prompts based
on model outputs [29]. This iterative process may include human-in-the-loop systems
or automated mechanisms designed to detect and correct errors or inconsistencies
in responses. By iteratively refining prompts through continuous optimization, we can
enhance overall model performance, ensuring more accurate and reliable outputs.

6 Conclusion

The experiments conducted with GPT-3.5-Turbo, despite not utilizing the latest com-
mercial models such as GPT-4o, yielded promising results. In Task A, GPT-3.5-Turbo
outperformed fine-tuned open-source models. However, it’s important to note that
these commercial models are closed-source, and the cost associated with domain-
specific fine-tuning can be prohibitive.

Incorporating domain-specific information and providing a list of classification types
within the prompt significantly enhances inference performance. A particularly effective
strategy involves initially classifying terms into higher-level categories before refining
them into more specific subcategories. This approach not only improves classification
accuracy but also reduces the number of tokens required in the prompt.

Our study offers valuable insights into the performance of GPT-3.5-Turbo and Llama-
3-8B on complex NLP tasks, underscoring the importance of training methodologies
and the role of contextual information in boosting model accuracy. These findings
carry helpfulness for the development of future models and methodologies in natu-
ral language processing. Notably, the fine-tuned open-source models demonstrated
competitive performance on the GeoNames dataset, rivaling that of GPT-3.5-Turbo.

Supplemental Material Statement

Our LLM prompt templates, comprehensive results, and the entire code-base are avail-
able as supplementary material on GitHub: https://github.com/MouYongli/LLMs4OL.
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