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Abstract: This paper outlines the LLMs4OL 2024, the first edition o f t he Large Lan-
guage Models for Ontology Learning Challenge. LLMs4OL is a community develop-
ment initiative collocated with the 23rd International Semantic Web Conference (ISWC) 
to explore the potential of Large Language Models (LLMs) in Ontology Learning (OL), a 
vital process for enhancing the web with structured knowledge to improve interoperabil-
ity. By leveraging LLMs, the challenge aims to advance understanding and innovation 
in OL, aligning with the goals of the Semantic Web to create a more intelligent and user-
friendly web. In this paper, we give an overview of the 2024 edition of the LLMs4OL 
challenge1 and summarize the contributions.
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1 Introduction

The Semantic Web aims to enrich the current web with structured knowledge and meta-
data, enabling enhanced interoperability and understanding across diverse systems. 
At the core of this endeavor is Ontology Learning (OL), a process that automates the 
extraction of structured knowledge from unstructured data [1], essential for construct-
ing dynamic ontologies that underpin the Semantic Web. The emergence of Large 
Language Models (LLMs) like GPT-3 [2] and GPT-4 [3] has revolutionized natural lan-
guage processing (NLP), demonstrating remarkable performance across tasks such as 
language translation, question answering, and text generation. These models are par-
ticularly adept at crystallizing existing textual knowledge from a vast array of sources, 
making them potentially valuable for OL, where the goal is to extract a shared concep-
tualization of concepts and relationships from diverse inputs [4]. The introduction of 
LLMs has thus opened up new avenues of research, including the exploration of their 
potential in automating the OL process.

In our prior work published in the ISWC 2023 research track proceedings titled 
“LLMs4OL: Large Language Models for Ontology Learning” [5], marked a notable di-
rection towards employing LLMs in OL, demonstrating their potential in automating 
knowledge acquisition and representation for the Semantic Web. Based on this re-
search, the The 1st Large Language Models for Ontology Learning Challenge at

1https://sites.google.com/view/llms4ol
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Figure 1. The LLMs4OL task paradigm is an end-to-end framework for ontology learning. The three
OL tasks that empirically validated in the LLMs4OL 2024 challenge, based on our prior re-
search [5], are depicted within the blue arrow, aligned with the greater LLMs4OL paradigm.

the 23rd ISWC 2024 (1st LLMs4OL Challenge @ ISWC 2024) was introduced as a
call for community development. With the LLMs4OL challenge, we aimed to catalyze
community-wide engagement in validating and expanding the use of LLMs in OL. This
initiative is poised to advance our comprehension of LLMs’ roles within the Semantic
Web, encouraging innovation and collaboration in developing scalable and accurate
ontology learning methods.

LLMs4OL consists of three OL tasks, Task A – Term Typing, Task B – Taxonomy
Discovery, and Task C – Non-Taxonomic Relation Extraction. While participation in all
three tasks in the LLMs4OL 2024 challenge is stipulated as desirable, but not manda-
tory. Thus participants choose to enroll only in Task A or B or C, or Task A and B, or
Task A and C, or Task B and C. Furthermore, participants are required to implement
LLM-based solutions, we did not impose any restrictions on the LLM prompting meth-
ods. For instance, they can choose to bring in additional context information from the
World Wide Web to enrich the training and test instances. To thoroughly explore the
potential of LLMs for OL, we structured the challenge around two distinct evaluation
phases: (1) Few-shot testing phase and (2) Zero-shot testing phase. Through this
work, we aim to contribute to the ongoing discourse on the capabilities of LLMs, par-
ticularly in the context of OL, and to provide insights into their potential for enhancing
the Semantic Web. Thus, in the remainder of this paper, we detail the challenge tasks,
what LLMs are being used, participant contributions, and findings.

2 LLMs4OL 2024 Tasks

In the LLMs4OL 2024 challenge, we have organized three main tasks which are cen-
tered around the ontology primitives [6] that comprise the following: 1. a set of strings
that describe terminological lexical entries L for conceptual types; 2. a set of concep-
tual types T ; 3. a taxonomy of types in a hierarchy HT ; 4. a set of non-taxonomic
relations R described by their domain and range restrictions arranged in a heterarchy
of relations HR; and 5. a set of axioms A that describe additional constraints on the
ontology and make implicit facts explicit.

To address these primitives, the tasks for OL [7] are: 1) Corpus preparation – collect-
ing source texts for building ontology. 2) Terminology extraction – extracting relevant
terms from the texts. 3) Term typing – grouping similar terms into conceptual types.
4) Taxonomy construction – establishing “is-a” hierarchies between types. 5) Rela-
tionship extraction – extracting semantic relationships beyond “is-a” between types. 6)
Axiom discovery – finding constraints rules for the ontology. These tasks constitute the
LLMs4OL task paradigm as depicted in Figure 1. Assuming the corpus preparation
step is done by reusing ontologies publicly released in the community, we introduced
the following three main tasks for the first edition of the LLMs4OL challenge.
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Table 1. LLMs4OL 2024 challenge, subtasks, domains, number of participants per subtasks, and evalu-
ation phases.

Task SubTask Domain Participants Phase

A

A.1 - WordNet lexicosemantics 7

Few-shot

A.2 - GeoNames geographical locations 5
A.3 - UMLS - NCI

biomedical
5

A.3 - UMLS - MEDCIN 4
A.3 - UMLS - SNOMEDCT US 4
A.4 - GO - Biological Process

biological
5

A.4 - GO - Cellular Component 5
A.4 - GO - Molecular Function 5
A.5 - DBO general knowledge 2

Zero-shot
A.6 - FoodOn food 2

B

B.1 - GeoNames geographical locations 5

Few-shot
B.2 - Schema.org web content types 3
B.3 - UMLS biomedical 3
B.4 - GO biological 1
B.5 - DBO general knowledge 2

Zero-shot
B.6 - FoodOn food 1

C
C.1 - UMLS biomedical 2

Few-shot
C.2 - GO biological 0
C.3 - FoodOn food 0 Zero-shot

2.1 Task A – Term Typing

The Table 1 shows 10 subtasks for Task A across 6 distinct domains such as lexi-
cosemantics, geographical locations, biomedical, biological, general knowledge, and
food domains. This task is defined as ”discover the generalized type for a given lexical
term”. For this task, for each ontology, participants are given training instances defined
as following formalism.

fTaskA
prompt(L) := [S?]. ([L], [T ])

Where S is an optional context sentence (if available in the source ontology), L is the
lexical term prompted for, and T is the conceptual term type. In the test phase, types
are hidden, and participants predict them for given terms using their trained models.

2.2 Task B – Taxonomy Discovery

After grouping terms under a conceptual type, in Task B, the goal is for given types
”discover the taxonomic hierarchy between types”, where the hierarchy between types
is defined with an ”is-a” relationship. Participants receive training instances for 6 distinct
subtasks (described in Table 1) as :

fTaskB
prompt(a, b) := (Ta, Tb)

Where Ta is the parent (superclass) of Tb, and Tb is the child (subclass) of Ta. The
goal is to train a system to correctly identify the taxonomy between type. The training
dataset will include term types and taxonomically related type pairs. In the test phase,
participants work with just term types and must use their trained models to identify
correct taxonomic relationships (type pairs). The types for the training and test phases
are mutually exclusive. Furthermore, for the testing phase participants are required
to post-process their outputs to return type pairs that follow the order of superclass-
subclass related types.
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2.3 Task C – Non-Taxonomic Relation Extraction

Nonetheless, the ”is-a” relations are not the only relations in ontologies. So, Task C
aims to ”identify non-taxonomic, semantic relations between types”. Training instances
are given for three subtasks C.1 - UMLS, C.2 - GO, and C.3 - FoodOn as:

fTaskC
prompt(h, r, t) := (Th, r, Tt)

Where, Th and Tt are head and tail taxonomic types, respectively, and r is the non-
taxonomic semantic relation between them, chosen from a predefined set R of seman-
tic relations. Participants aimed to train a system to identify pairs of types, and then
classify pairs of types into semantic relations. The training phase involves types, re-
lations, and triples of semantic relations; the test phase requires applying the trained
system to predict semantically related triples from given types and the set of relations.

The caveat here is that we do not expect participant systems to infer a semantic
relation but rather establish semantically related types and classify their relation from
a known set of predetermined relations. This implies that any manual ontology spec-
ification task predetermines which semantic relations hold for the given ontology. In
an alternative scenario, where participants might have had to infer the semantic re-
lation, we realize that the possibilities of semantic relations might have been rather
vast. Hence we posit a more realistic task design by predetermining the possible set of
semantic relations.

3 Evaluation

There are two main evaluation phases for the challenge, which are the following:

• Few-shot testing phase. Each ontology selected for system training will be di-
vided into two parts: one part will be released for the training of the systems and
another part will be reserved for the testing of systems in this phase.

• Zero-shot testing phase. New ontologies that are unseen during training will be
introduced. The objective is to evaluate the generalizability and transferability of
the LLMs developed in this challenge.

For evaluation, we used the challenge datasets [8] – available at challenge GitHub2

repository – with standard evaluation metrics used for all tasks. Given G(i) as a set of
ground truth labels for sample i, and P(i) as a set of predicted labels for sample i, the
precision P , recall R, and F1-score F1 are being calculated as follows:

P =

∑
i |G(i) ∩ P(i)|∑

i |P(i)|
, R =

∑
i |G(i) ∩ P(i)|∑

i |G(i)|
, F1 =

2× P ×R

P +R

With precision, we assessed the percentage of the returned related pairs, while recall
was used to measure the proportion of correct pairs that were accurately retrieved.
In the end, the F1-score was calculated as the harmonic mean of precision and re-
call, serving as a comparison metric for the participants’ submissions. We used Co-
dalab3 [9] submission platform to organize participants submissions and scoring.

4 Participant Systems and Results

The LLMs4OL 2024 challenge has inspired diverse solutions, showcasing the grow-
ing potential of LLMs for OL tasks. Using the Codalab submissions platform, for this

2https://github.com/HamedBabaei/LLMs4OL-Challenge-ISWC2024
3https://codalab.lisn.upsaclay.fr/competitions/19547
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Table 2. LLMs4OL 2024 challenge participants methods. ∗ refers to the subtask that did not make the
submission to the leaderboard but was reported in the paper. MF refers to ”Molecular Function”,
CC refers to ”Cellular Component”, and BF refers to ”Biological Process”. NCI, SNOMEDCT US, and
MEDCIN are from ”UMLS”.
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DSTI [10] Flan-T5
GTE-Large

Fine-tuning
RAG � ∗

DaSeLab [11] GPT-3.5-Turbo Fine-tuning �

RWTH-DBIS [12] GPT-3.5-Turbo
LLaMA-3-8B

Prompting
Fine-Tuning �

SKH-NLP [13] LLaMA-3-70B
Sentence-BERT

Prompting
Fine-Tuning �

TheGhost [14]

BLOOM-1B7
BLOOM-3B

BLOOM- 7B1
LLaMA-7B

LLaMA-2-7B
LLaMA-3-8B
BioMistral-7B

OpenBioLLM-8B

Prompt-Tuning �

silp nlp [15]

GPT-4o
Mixtral-8x7B
LLaMA-3-8B

BERT
Sentence-BERT

Prompting
Fine-Tuning

ML
�

Phoenixes [16] Mistral-7B
Sentence-BERT RAG �

TSOTSALearning [17] GPT-4
BERT

RAG
Rules �

challenge we set a limit of 10 submissions per day and a total of 30 submissions per
subtask. We received 272 total submissions from 14 participants. In final, this chal-
lenge attracted the interest of the final eight research teams, as demonstrated by the
various approaches they submitted for the subtasks. Each subtask of the competi-
tion depicted a rigorous field inherent to OL, which helped facilitate breakthroughs in
finding generalized types (Task A), identifying taxonomic hierarchies (Task B), and ex-
tracting non-taxonomic relations (Task C), further scaffolding future AI advancements.
Notably, teams employed varied strategies to tackle subtasks, such as fine-tuning,
prompt-tuning, and retrieval-augmented generation (RAG). These approaches were
used to analyze OL tasks across domains like lexicosemantics, geographical locations,
biomedical concepts, and more (see Table 1 for subtasks and domains involved in this
challenge). The summary of explored LLMs and subtasks are presented in Table 2 and
in the following we will detail contributions and findings.

4.1 Participants Contributions

The results for Task A are presented in Table 3, for Task B in Table 5, and for Task C in
Table 4.

DSTI [10]. DSTI fine-tuned Flan-T5-Small [18] model for SubTasks A.1 - WordNet
and A.2 - GeoNames. Obtained F1-score of 0.9716 for SubTask A.1 and ranked as a
second team. But for GeoNames they did not submit the model to the leaderboard due
to the larger nature of GeoNames dataset that required more computational resources.
They introduced two approaches for OL. The first approach is fine-tuning LLMs using
the zero-shot prompting method, the second approach is using a RAG pipeline using
the General Text Embeddings (GTE)-Large [19] model as a retriever and fine-tuned
LLM as a retriever. Due to the computational resources they preferred to use the Flan-
T5-small model, and the results showed the effectiveness of their approach.
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Table 3. Task A - Term Typing Results for SubTasks

SubTask Team Name F1-Score Precision Recall

A.1 (FS) - WordNet

TSOTSALearning 0.9938 0.9938 0.9938
DSTI 0.9716 0.9716 0.9716
DaseLab 0.9697 0.9689 0.9704
RWTH-DBIS 0.9446 0.9446 0.9446
TheGhost 0.9392 0.9389 0.9395
Silp nlp 0.9037 0.9037 0.9037
Phoenixes 0.8158 0.7689 0.8687

A.2 (FS) - GeoNames

DaseLab 0.5906 0.5906 0.5906
Silp nlp 0.4433 0.7503 0.3146
RWTH-DBIS 0.4355 0.4355 0.4355
TSOTSALearning 0.2937 0.2937 0.2937
TheGhost 0.1489 0.1461 0.1519

A.3 (FS) - UMLS - NCI

DaseLab 0.8249 0.8161 0.8340
Silp nlp 0.6974 0.8792 0.5779
TheGhost 0.5370 0.4450 0.6769
RWTH-DBIS 0.1691 0.1821 0.1579
Phoenixes 0.0737 0.0562 0.1070

A.3 (FS) - UMLS - MEDCIN

Silp nlp 0.9382 0.9591 0.9181
DaseLab 0.9373 0.9379 0.9366
TheGhost 0.5328 0.4183 0.7336
RWTH-DBIS 0.4566 0.4607 0.4526

A.3 (FS) - UMLS - SNOMEDCT US

DaseLab 0.8829 0.8810 0.8848
Silp nlp 0.7552 0.8583 0.6742
TheGhost 0.5275 0.4266 0.6910
RWTH-DBIS 0.4747 0.4888 0.4613

A.4 (FS) - GO - Cellular Component

Silp nlp 0.2726 0.4279 0.2000
RWTH-DBIS 0.2178 0.1846 0.2656
TheGhost 0.1877 0.1653 0.2171
TSOTSALearning 0.0638 0.0767 0.0545
Phoenixes 0.0158 0.0124 0.0217

A.4 (FS) - GO - Biological Process

Silp nlp 0.2691 0.4006 0.2026
TheGhost 0.1025 0.0964 0.1095
RWTH-DBIS 0.0881 0.0693 0.1207
TSOTSALearning 0.0648 0.0806 0.0542
Phoenixes 0.0319 0.0214 0.0622

A.4 (FS) - GO - Molecular Function

Silp nlp 0.2970 0.4185 0.2302
RWTH-DBIS 0.1418 0.1670 0.1231
TheGhost 0.1270 0.1278 0.1261
TSOTSALearning 0.0910 0.1072 0.0790
Phoenixes 0.0700 0.0485 0.1256

A.5 (ZS) - DBO
RWTH-DBIS 0.4270 0.4270 0.4270
Silp nlp 0.3009 0.3009 0.3009

A.6 (ZS) - FoodOn
RWTH-DBIS 0.8068 0.8068 0.8068
Silp nlp 0.7278 0.7278 0.7278

RWTH-DBIS [12]. This team participated in tasks A and B (12 subtasks in total).
For both tasks, they proposed a domain-specific continual training, fine-tuning, and
knowledge-enhanced prompt-tuning approach. The models are firstly enriched with
conceptual information related to terms and types. This is followed by CausalLM man-
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ner and task-specific fine-tuning using LLaMA-3-8B [20]. The proposed approach per-
forms well on several subtasks, showcasing that incorporating domain-specific informa-
tion and providing a list of classification types enhances inference performance. They
concluded that in Task A, GPT-3.5-Turbo [21] outperformed fine-tuned open-source
LLM, and incorporating domain-specific information and providing a list of types at
prompt significantly enhances the performance.

DaSeLab [11]. The DaSeLab team participated in UMLS, GeoNames, and Word-
Net subtasks. This team approach is based on fine-tuning a GPT-3.5-Turbo model.
The result of fine-tuning on UMLS and GeoNames domains showed that fine-tuning of
such model can achieve superior performance. The DaSeLab ranked first place in NCI
(0.8249), GeoNames (0.5906), and SNOMEDCT US (0.8829) subtasks (scores inside
practices are F1-scores).

TheGhost [14]. The TheGhost team investigated a variety of LLMs with a prompt-
tuning approach. They are the first team in the challenge that explored 11 LLMs (the
LLM list depicted in Table 2) for 8 subtasks of term typing tasks within a few-shot testing
evaluation scenario. They showed the viability of soft prompt tuning for OL and the
challenge of imbalanced class prompt tuning. Their finding supports the complexity of
geographical and biological domains at the term typing task of OL.

silp nlp [15]. The silp nlp team participated in all three tasks with a total of 15 sub-
tasks. They ranked in first place in several subtasks including A.3 (FS) - UMLS - MED-
CIN ( 0.9382), A.4 (FS) - GO - Cellular Component (0.2726), A.4 (FS) - GO - Biological
Process (0.2691), A.4 (FS) - GO - Molecular Function (0.2970), B.2 (FS) - Schema.org
(0.6157), B.3 (FS) - UMLS, B.5 (FS) - DBO (0.2109), and C.1 (FS) - UMLS (0.0783).
They employed several machine learning techniques, such as Random Forest, Logistic
Regression, and XGBoost, alongside advanced generative models like LLaMA-3-8B,
Mixtral [22], and GPT-4o [3]. The results revealed that prompt-based methods were ef-
fective in some domains but not universally applicable. Notably, Random Forest models
excelled in subtasks A.1 through A.4, while GPT-4o dominated the zero-shot tasks A.5
and A.6, as well as relation extraction tasks B and C. This team obtained in first-place
in six subtasks and second place in five subtasks.

TSOTSALearning [17]. The TSOTSALearning team focused on LLMs such as BERT [23]
and GPT-4. Through experimentation on SubTask A.1 - WordNet dataset, they achieved
an F1-score of 0.9264 with GPT-4, but significantly improved results when they com-
bined BERT with rule-based strategies, leading to an F1-score of 0.9938 and ranked
first place in WordNet dataset. Their findings showed the importance of incorporating
rules into LLMs for enhanced accuracy in OL. However, they highlight the challenge of
identifying appropriate rules, suggesting that future work should focus on automating
rule detection and integrating them seamlessly into LLMs. The WordNet dataset is be-
ing considered as a low number of types and having a higher number of types makes
it challenging to obtain highly accurate rules.

SKH-NLP [13]. Team SKH-NLP participated in SubTask B.1 - GeoNames, where
they developed a fine-tuning approach using the LLaMA-3-70B and BERT-Large [24].
This team obtained the first place in SubTask B.1 - GeoNames with an F1-score of
0.6557. Their comprehensive analysis demonstrates that BERT-Large, when fine-
tuned, achieves performance close to the larger LLaMA-3-70B model.

Phoenixes [16]. The Phoenixes team explored the application of a Retrieval Aug-
mented Generation (RAG) approach within the 12 subtaks of the challenge. They
introduced a promising RAG-specific formulation over all three tasks of OL, where a
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Table 4. Task B - Taxonomy Discovery Results for SubTasks

SubTask Team Name F1-Score Precision Recall

B.1 (FS) - GeoNames

SKH-NLP 0.6557 0.6318 0.6814
RWTH-DBIS 0.3409 0.2400 0.5882
Silp nlp 0.0830 0.0446 0.5931
TSOTSALearning 0.0104 0.0052 0.5294
Phoenixes 0.0036 0.0019 0.0294

B.2 (FS) - Schema.org
Silp nlp 0.6157 0.4578 0.9396
RWTH-DBIS 0.5733 0.5475 0.6016
Phoenixes 0.0155 0.0079 0.3901

B.3 (FS) - UMLS
Silp nlp 0.3544 0.4118 0.3111
Phoenixes 0.0960 0.0550 0.3778
RWTH-DBIS 0.0491 0.0257 0.5556

B.4 (FS) - Gene Ontology (GO) Phoenixes 0.0164 0.0180 0.0149

B.5 (FS) - DBpedia Ontology (DPO)
Silp nlp 0.2109 0.1412 0.4164
Phoenixes 0.0164 0.0180 0.0149

B.6 (ZS) - Food Ontology (FoodOn) Phoenixes 0.0308 0.0243 0.0420

Table 5. Task C - Non-Taxonomic Relation Extraction Results for SubTasks

SubTask Team Name F1-Score Precision Recall

C.1 (FS) - UMLS
Silp nlp 0.0783 0.0494 0.1888
Phoenixes 0.0273 0.0433 0.0199

RAG system with minor changes was developed for both tasks A and B, later can be
used as a two-step approach for task C. Task C consists of the following steps: Step 1
– runs the Task B approach for finding child-parent pairs and step 2 – applying the Task
A approach for assigning the relations to the pairs. They incorporated Mistral-7B [25]
as LLM and Dense Passage Retrieval (DPR) [26] model as the retriever model in the
RAG framework. However, their results in both zero-shot and few-shot fall shorter than
the fine-tuned models and this suggests that still fine-tuning is the key to obtain a high
performance within OL.

4.2 Large Language Models

The participants in the challenge utilized a diverse array of LLMs, each bringing distinct
strengths to the tasks. We detailed a breakdown of the key strengths of the prominent
LLMs used.

GPT FAMILY – GPT-3.5-Turbo, GPT-4, and GPT-4o: GPT based LLMs, developed by
OpenAI, are renowned for their advanced natural language understanding and gen-
eration capabilities. These models excel in context comprehension and can handle a
variety of queries effectively, making them particularly suitable for tasks that require
deep semantic understanding and detailed generation. Their ability to generalize from
a wide range of training data allows them to perform well across various knowledge
domains relevant ontologies [5], [27]. GPT-3.5-Turbo was a popular choice among par-
ticipants, with teams such as DaSeLab, RWTH-DBIS, and silp nlp using the model and
demonstrating its high adaptability and effectiveness across the various challenge sub-
tasks. Furthermore, GPT-4 and GPT-4o as more advanced models over GPT-3, were
explored by the teams: TSOTSA Learning and silp nlp.

10
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LLAMA FAMILY – LLaMA-7B, LLaMA-2-7B, LLaMA-3-8B, and LLaMA-3-70B: The LLaMA
models were another prominent choice among participants. With models like LLaMA-2
and LLaMA-3 featured by TheGhost, RWTH-DBIS, SKH-NLP, and silp nlp, their popu-
larity stems from their open-source, efficiency, and scalability. These models’ strengths
in handling large-scale data and intricate details made them well-suited for comprehen-
sive multi-dimensional data interpretation.

BLOOM FAMILY – BLOOM-1B7, BLOOM-3B, and BLOOM-7B1: BLOOM [28] models,
featured in our original research work [5], gained traction due to their open-access na-
ture and collaborative development. TheGhost, in particular, utilized a range of BLOOM
models for their flexibility and multilingual capabilities.

BIOMEDICAL FAMILY – BioMistral-7B and OpenBioLLM-8B: BioMistral-7B [29], as a
domain-specific fine-tuned variant of Mistral-7B, and OpenBioLLM-8B [30], as a domain-
specific fine-tuned variant of LLaMA-3-8B, were utilized for their domain-specific strengths
in biomedical contexts. TheGhost’s use of these models highlights their importance in
tasks requiring detailed biomedical terminology and concepts, emphasizing their sig-
nificance in the specialized subfields of the challenge.

MISTRAL FAMILY – Mistral-7B and Mixtral-8x7B: Mistral-7B, part of the Mistral family of
models, was noted for its performance in the challenge by teams like Phoenixes and
TheGhost. Moreover, Mixtral-8x7B was utilized by the team silp nlp.

OTHERS – Flan-T5, GTE-Large, Sentence-BERT, and DPR: Flan-T5 and GTE-Large
were chosen for their adaptability and fine-tuning capabilities. DSTI recognized their
potential in fine-tuning and handling diverse NLP tasks efficiently when there are limited
computational resources. Sentence-BERT was prominently used for tasks involving
semantic similarity and sentence-level embeddings. Its popularity among participants
like SKH-NLP and Phoenixes. Phoenixes used DPR for the retrieval model of the RAG
approach.

4.3 Trade-offs Between Precision and Recall

Across the tasks, a clear trend emerges among the participating teams. Teams like
silp nlp often exhibit high precision but lower recall, particularly in subtasks related
to GO and UMLS ontologies. This suggests that while silp nlp is adept at avoiding
false positives and making accurate predictions, it frequently misses relevant instances,
indicating a more conservative approach. However, teams such as RWTH-DBIS and
Phoenixes display a different trend, where recall is relatively higher than precision.
These teams retrieve a larger number of relevant results but at the cost of precision,
indicating that they tend to capture a broad set of possible answers, including many
false positives. Their approach may be useful in tasks where coverage is prioritized
over accuracy, but it also introduces challenges in filtering out noise.

Teams that manage to balance both precision and recall, such as DaSeLab and
SKH-NLP, stand out for their well-rounded performance. These teams perform consis-
tently across different subtasks by finding a middle ground between retrieving enough
relevant results and minimizing false positives. DaSeLab, for example, shows balanced
performance across multiple subtasks, especially in UMLS-related tasks, suggesting a
more effective strategy. Meanwhile, SKH-NLP stands out in the GeoNames taxonomy
discovery task, where it achieves high precision and recall, demonstrating its capability
to capture relevant information without sacrificing accuracy.
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In more challenging tasks, such as non-taxonomic relation extraction, the disparity
between precision and recall becomes particularly pronounced. For example, both
silp nlp and Phoenixes struggle, with silp nlp showing low precision but managing to
retrieve more relevant results than Phoenixes, which has very low recall. This sug-
gests that these tasks may require more sophisticated models or techniques to achieve
higher performance. Overall, the results reflect that teams vary significantly in how they
prioritize precision and recall, depending on the specific subtask, with some teams ex-
celling in precision-oriented tasks while others show better results in recall-sensitive
subtasks.

5 Discussion

Performance Analysis. As the participating teams navigated through the zero-shot
and few-shot testing phases of the LLMs4OL 2024 challenge, notable variations in
performance underscored the importance of model adaptability and data-specific ad-
justments. Few-shot tasks, particularly those involving geographical, biological, and
biomedical domains, highlighted the critical need for specialized model tuning and the
strategic use of training data to achieve high precision and recall rates. This indicates
that achieving optimal performance in real-world ontology challenges requires not only
selecting the right LLMs but also fine-tuning them to align with the specific character-
istics of the domains and tasks at hand. Additionally, studies show that for Task A,
even smaller models like Flan-T5-Small with 80M parameters can perform well when
there are fewer types. However, as the number of types increases, larger models, such
as those with 7B parameters, tend to perform better. One reason for the popularity
of 7B models is that Parameter-Efficient Fine-Tuning (PEFT) [31] fine-tuning requires
less memory compared to traditional fine-tuning methods. Many participants also in-
corporated external knowledge, such as type definitions, synthesis data using LLMs, or
general knowledge graphs (KGs) to build answer sets. These strategies have demon-
strated a positive impact on fine-tuning performance.

Complexity Across Domains and Tasks. The results indicated that certain domains
and tasks, such as biomedical term typing and non-taxonomic relation extraction, were
more challenging than others. The variation in performance across tasks, particularly
in relation to term complexity (e.g., Gene Ontology), highlights the complexity of cer-
tain knowledge domains. This still requires specialized approaches. The Phoenixes
(on all three tasks) and DSTI (on task A only) teams introduced a formulation based on
Retrieval-Augmented Generation (RAG) approaches with success, indicating that com-
bining LLM generation capabilities with retrieval mechanisms can enhance accuracy in
OL tasks. This approach is particularly suitable due to the hybrid framework with high
adaptability to be extended with different components.

Few-Shot and Zero-Shot Testing Phases. While many models performed well in
the few-shot phase, the zero-shot testing phase exposed limitations in the generaliza-
tion capabilities of LLMs. Models like GPT-3.5 and GPT-4 demonstrated strong per-
formance, but there were notable drops when transitioning from few-shot to zero-shot
testing phases. More research is needed to improve the transferability and robustness
of LLMs across unseen domains and ontologies.

Task A vs Task C. From a task perspective, Task C attracted only two teams, indi-
cating it was perceived as highly challenging. Non-taxonomic relation extraction re-
quires identifying complex relationships between terms that go beyond hierarchical
(taxonomy-based) relations, which is a significantly more intricate task. Unlike sim-
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ple is-a relationships, non-taxonomic relations are more diverse, context-dependent,
and require a deeper understanding of the subject matter. Extracting these relations
often involves dealing with ambiguous or implicit connections, requiring models to in-
fer meanings that might not be explicit. This complexity might have discouraged more
teams from participating, as success in this task requires advanced techniques, often
combining deep semantic understanding with domain-specific knowledge. On the other
hand, Task A, term typing, had much higher participation compared to Task C. This task
involves classifying terms into predefined categories, a more familiar task for many re-
searchers. Term typing is conceptually simpler because it involves assigning a label
to a term, which is something that even general-purpose LLMs can do relatively well.
There is a clear, finite set of categories or types, and many participants experimented
with text classification approaches.

6 Conclusion

The 1st Large Language Models for Ontology Learning Challenge at ISWC 2024 has
revealed the emerging potential of LLMs beyond previous studies of OL tasks. The
diverse range of participant systems, including fine-tuning, prompt-tuning, and retrieval-
augmented generation approaches, demonstrated how adaptable LLMs can be when
handling complex ontological data across various domains. The integration of diverse
LLMs like GPT-4o, GPT-3.5, LLaMA-3, and Mistral underscored the versatility of LLMs.

Through this challenge, key insights were garnered regarding the strengths and limi-
tations of current LLMs for OL. Notably, while LLMs have shown a remarkable capacity
to generalize across unseen tasks (as evidenced by their performance in few-shot and
zero-shot scenarios), certain domains such as biomedical and geographical ontolo-
gies posed unique challenges, particularly in terms of class imbalance and complex
taxonomies. These challenges opened pathways for future research, emphasizing the
need for scalable LLM training and the refinement of prompt-based methods to handle
highly specialized ontologies.

Moreover, the variety of approaches suggests that hybrid methods combining LLMs
with domain-specific knowledge are particularly effective. Moving forward, research
should focus on improving the interpretability and scalability of LLM-based OL systems
to enable even more accurate and dynamic knowledge extraction. This challenge has
laid the groundwork for expanding LLM capabilities in the context of the Semantic Web,
fostering innovation and collaboration in building the next generation of intelligent web
technologies.
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