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Abstract. A major goal for FAIR Digital Objects (FDOs) is to enable machine readabil-
ity, interpretability and actionability for data and metadata of digital objects. This paper
examines, how this can be achieved at the level of processing, grammars, derived lan-
guages and push-down automata, and describes formal requirements for the definition
of FDO records.

After a description of FDOs and what requirements are necessary that they can
be processed by machines the importance of types for the processing of bitstreams as
well as key-value-pairs in attributes is highlighted and the different options to represent
values in attributes of FDOs are investigated.

Machine actionability describes the knowledge of machines about how to process
the object. This requires to process not just the languages that can be used for attribute
definitions to determine the type of the value, but also the grammars that generate
these languages. In this paper a generic way is investigated, how machines can read
languages for grammar rules and apply them. Also a way out of a possibly unlimited
need for machines able to process different such description languages is presented.

Even if these findings are on an abstract level, the outcome has direct conse-
quences for the way, how FDO records, data types or profiles have to be defined, which
standardization agreements are needed and thus how attributes, types or profiles have
to be implemented. It can be seen as a theoretical guideline for standarization and for
implementation.
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1. FDOs for Machines

The FDO-Forum describes FAIR Digital Objects (FDOs) as machine actionable units
of information bundling all information that is needed to enable FAIR processing of any
included bit-sequence. Based on the FDO Forum FDO Requirement Specifications [1]
an FDO needs to fulfill the following simplified requirements:

• A PID, standing for a globally unique, persistent and resolvable identifier, is as-
sumed to be at the basis for FDOs.
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• This PID resolves to a structured FDO-Record compliant with a specified FDO-
Profile which leads to predictive resolution results.

• The FDO-Record needs to contain mandatory FDO (kernel) attributes, may con-
tain optional FDO Attributes and attributes agreed upon and defined by recog-
nized communities.

• For generic FDOs the reference to an FDO-Profile is mandatory.
• For FDOs refering to data additional attributes are mandatory:

– reference to the bit-sequence(s) encoding data,

– references to the different metadata resources and

– an FDO-Content-Type.

A type of an object is understood here as a description on how to process the object.
Along the characterization of Parnas, Shore and Weiss [2] a type can be provided by
a representation of the value space, exactly described by successively more primitive
types, possibly augmented with operations on elements of that value space or less ex-
actly described, partly encapsulated value spaces. The FDO-Content-Type is therefore
the description how to process the content: the bit sequence referenced in the FDO
record. An FDO-Type is assumed to be machine readable.

The FDO-Profile is the type of the FDO-Record itself. The type of the attributes or
the profile is given by attribute or profile definitions. They constrain the value space of
them, but also for instance the description language (JSON/XML etc.) used or possible
applicable operations. This way it decribes, how to process them. These are special
aspects of the following dependencies around FDOs, as described in a paper of the
TSIG WG of the FDO Forum [3].

Figure 1. An FDO has a record of key-value-pairs determined by a profile that is an FDO of its own.

As a result the definition of FDOs is recursive, because the profile, types and the
references are given as attributes in the FDO record and the profile as well as attribute
and type definitions are integral parts of the definition of FDOs and are again FDOs.
The processing therefore will also be recursive.
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1.1 Processing an FDO Record

From the user’s perspective the processing of an FDO record starts with the resolution
of a PID/URI into a PID/FDO record and, according to a given profile, this record is
parsed into a set of attributes consisting of key-value-pairs.

1.1.1 The Processing Loop

After an identification of the attributes of relevance in the FDO the key reference and
the definition of them are resolved and parsed and all values of interest are processed.
In the case all values are in the FDO Record, the loop terminates. Otherwise if they
are referenced by an ID/URI, it is necessary to recurse in the loop.

This processing loop, as described by Christophe Blanchi in an unpublished draft
of the TSIG working group of the FDO Forum [4], therefore is an iteration of answers to
the questions "where to find and how to process an object?", in other words for location
and type. This obviously only works, if a resolver from identifiers to FDO records or
terminal bit sequences exists.

The typical approach for processing a single type of objects is to build a machine
suitable to process objects with that given type (i.e. a schema or MIME type). This
approach assumes that both, location and type of the object, are a priori given. Usually
this is realized by a reference to the object and the creation of a specific machine for
the object type at hand.

Location and type of FDOs are required here at each level of the FDO processing
loop above in a similar way. It starts with the PID pointing to the FDO record with
its profile and continues with the attributes and their definitions. The object location
is given by reference. And since the objects often are not just of primitive type, their
description is then also given by reference with possibly different description languages.

An approach with specificly created machines at each state of the loop therefore
will not work here. In the processing loop an automation to gather these requirements,
location and type, is needed and this requires a generic approach and some standards,
especially for the type descriptions, that can be handled by machines.

1.1.2 Types and Type Definitions for FDOs

For attributes as key-value-pairs there is a helpful and simple predefined structure given
by the agreement that the key describes the type of the object given by the value.
Such a dependency structure is often used in the context of metadata or for key-value
structures as such.

This agreement can also be made for FDOs. Here the key in attributes is the type
of the value and this type is always a reference to another FDO that describes how to
process the value as its object. This referenced FDO is called type definition.

This is the case for all attributes given as key-value-pairs in FDOs. In other words
attribute definitions are FDOs that provide the type of possible attribute values and their
PIDs are used as keys in attributes of FDO records.

But the allowed value space defined by the type in the key can be complex, such
that a direct storage of the value in the FDO record is not always possible. Moreover
the exact value space might not be finally known at the time a profile is defined.
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For instance in a first step of automation the type of a bitstream could be sufficiently
described by a MIME-type which can be given by just a string from an enumeration list.
But also it should be possible that a type definition can be a complex structure able to
make descriptions in different description languages like Parquet [5] Avro [6] or even
currently still unknown concepts.

Therefore the introduction of just one special key that provides the type of the
bitstream of an FDO will not be sufficient in general and another level of redirection
might be necessary to cover different description concepts for types.

This raises the question how to distinguish in an attribute, whether the value is
either the object itself, for instance just a number, a string or a simple JSON object, or
the reference to the object or even a reference to another attribute in the FDO record
that finally defines the type and what the criteria for an automated decision on that
might be.

1.1.3 Distinction between Inline or Internally and Externally Referenced Objects

A possible criterion for a discrimination between value and reference could be that,
if the value of an attribute matches the type, it can be assumed that this matching
is intentional. In this case the expected value could be assumed to be only for the
further processing of external clients. However this criterion is only heuristic and has
limitations by possible unsufficiently sharp type definitions that do not discriminate un-
wanted references. Furthermore it is expensive, because it requires to determine the
value space and to validate the value.

Figure 2. References given by values need additional flags to distinguish internal and external targets.

The discrimination between external value reference and internal type reference
could be given by the existence of the reference as additional key in the FDO record.
This criterion is not expensive, because it can be applied directly on the FDO record,
but it is also only heuristic. Cases could exist, where a reference is meant as an
external value, for instance an attribute type, and at the same time this reference is
also given as key of an additional attribute with according value.

A much better way to distinguish such cases is to flag the value of the attribute
somehow, for instance by prepending the reference strings with a characterising prefix,
like "FDO-REF:" or "FDO-ATTR:" and at the same time exclude such a prefix from all
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values that are not references. But this needs a standardization decision by the FDO-
Forum.

1.2 Normalisation of the FDO record

An FDO is given only by a reference, the PID, that resolves to an FDO record. Usually
there is no key-value-pair available with that PID as a value, where the key can lead to
its type.

1.2.1 A Normalisation Operation and 0.Profile

Therefore this requires first of all an agreement on some basic structure for the type of
a generic FDO record and then a normalisation operation from the actual, implemen-
tation dependend FDO record to that generic FDO record. Its type could be described
as an object of key-value-pairs with some minimal attributes as needed.

In accordance to the FDO requirements for this type of a normalized FDO record a
two step approach is proposed. In a first step a specific key for the profile is assumed to
be in the FDO record, i.e. the 0.Profile key, that has as value the profile, given directly
as object or as a reference. The 0.Profile as key refers to a type for possible profiles,
such that the profile as value of the attribute can be read by machines.

Variations between profile structures, dependent on the implementation, are pos-
sible. These variations could be given as allowed alternatives in the type definition
of 0.Profile. Mappings to a single generic 0.Profile structure are an alternative, which
might be advantageous, because this can also be implemented as part of the normali-
sation operation for the FDO record.

As a result the profile is an object of key-value-pairs that describes the structure of
the normalized FDO record, i.e. it determines, which attributes can be expected in the
FDO record, which are mandatory or optional, which names can be used as an alias for
the attribute definition behind the attribute that provides the type of the attribute. At its
minimum it requires only the 0.Profile key for the FDO record, but in general it requires
different more complex structures for different classes, sometimes called genres, of
FDOs. In other words the profile is the type of the FDO record as an extension beyond
the always provided profile attribute.

1.2.2 The Profile for Data FDOs

As described above there is an agreement in the FDO requirement specifications that
the FDO record of data objects in particular requires a reference to the bit-sequence(s)
that encode the data, the FDO-Content-Type of the bit-sequence(s), references to the
different metadata resources and as always the reference to the FDO-Profile.

For the FDO record there are two possible options how to organize the reference
to the bit-sequence and the FDO-Content-Type according to the general approach that
the key refers to the type of the object.

If a special attribute key, i.e. URL or some other reference to the payload is used as
key for references to digital objects, its type definition allows all possible, also repository
internal references to objects, that in general cannot be recognized as references by
their form. Therefore this key has to have a value as reference by definition and the key
cannot wear the type definition of the digital object behind the reference as value.
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Therefore it is suggested to provide an additional attribute for the object type with
an additional special key, i.e. 0.ContentTypeRef. The attribute with this key can be
one of the cases above with value or internal or external reference. This allows suffi-
cient flexibility to cover the simple MIME-type case, where the value is a string out of a
predefined enumeration list of possible known types. But it also could be a PID refer-
ence to a more complex content type structure. And it could be a reference to another
attribute in the FDO record that finally provides the type definition. This way it would be
possible to start the implementation with MIME types and later it is possible to extend
the concept to more complex content type descriptions.

2. Grammars for FDO Records

We have described above that the keys in FDO Records are PIDs referencing types
by other FDOs. These types as referenced FDOs are called attribute definitions that
describe what can be expected in an attribute and determine the type and value space
of the value in key-value-pairs.

But a machine still needs to find out, how to process the type or attribute definition
behind the key. This is a matter of the language a machine has to process and therefore
the context free grammar (CFG) behind that language. How these grammars should
be chosen, will be discussed in this chapter.

2.1 How to Process Types

Types have to be expressed in a language that a machine can process, which implies
that there is a CFG behind this language used in the type definition.

Because types or attribute definitions are themselves FDOs of data objects, they
have an FDO record that contains beside the reference to the type definition itself an
attribute with the FDO-Content-Type: the type of the type. All necessary information
seems to be available for machines this way. However there are three problems with
this approach.

Explosion of Types Problem: First of all this approach has to maintain a lot of
references and therefore redirections between the registries, where all these definitions
are stored. This in practice can be mitigated by caching these definitions, because
this leads to simple pointers inside the server code. A necessary condition for this
approach is however that the number of types is limited. But an explosion of types can
easily happen, if there are no rules and processes that strongly encourage the reuse
of existing types.

Infinite Type Definition Problem: The other, more fundamental problem is that
each type itself needs a type, a description, how to process it, that again needs a type,
which leads to an infinite definition of types. This infinite definition problem can be
solved only, if the way how a definition is described at a certain step in the chain equals
that of the former step. Occasionally this is possible such that a solution can be found.
For instance context free grammars (CFGs) can be given in Backus-Naur form and
the Backus-Naur form can be described as CFG. So the grammar and the grammar
definition can be given by the same grammar. This example of the Backus-Naur form
actually gives the hint, how the solution of this infinite definition problem can also be
given on the level of descriptions for types or attribute defintions.

Focussed Specification Problem: However a third problem pops up with this
possible solution for the second problem. Automated processing becomes the less
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precise and the less focussed the more general the grammar rules are. And Backus-
Naur forms are by definition as general as possible for automata. Type definitions on
the other hand need to provide very specific descriptions of the type at hand. Therefore
the generic result of Backus-Naur forms on alphabets and grammars is not sufficient for
machines to process objects along specific information given by types. It is therefore
necessary to find more focused subsets of grammars that solve the infinite definition
problem, but are precise enough to allow machines to make decisions on how to pro-
cess objects.

Which kind of grammar is best suited for specific machine decisions and at the
same time solving the infinite definition problem will be investigated in the following
sections. The possible explosion of types is then covered in the last section of this
chapter.

2.2 Machine Readability, Interpretability and Actionability

In the specification of the FDO-Forum on FDO Machine Actionability [7] three levels
have been stated from machine readability over interpretability to actionability.

Machine readability is obviously an activity of automata and is understood here as
the acceptance of the language of the FDO presentation by some automaton.

For the interpretability assumption this is also true but not directly obvious. Ele-
ments are called interpretable in that paper, if their meaning has been specified in some
semantic artifact as augmented assertions that build lists of entity relations. These re-
lations are described in a structured way, given for instance in RDF or JSON-LD. Thus
also for machine interpretability in the sense above the relations are structured into
languages that are accepted by automata and based on CFGs.

Machine actionability here is the knowledge, how an automaton reads and pro-
cesses a digital object. This knowledge is represented as the type of the object. For
machine actionability this represention needs to be structured into languages that be-
come accepted by automata.

A fundamental theorem of automata theory states that if a language is accepted by
a push down automaton, the language is context free and conversely that for a context
free language there exists a push down automaton that accepts this language [8].

For machine actionability this means that it is not sufficient to know, how the lan-
guage is described that is used for the construction of such types. The machine needs
rather to be able to process the grammar itsself, i.e. its production rules. There must be
a meta grammar, such that the machine can read the production rules of the grammar.
Therefore machine actionability is a kind of a second order machine readability. And
this is a recursive demand, because as shown before there might be an infite definition
problem for types.

But alltogether in this model of readability over interpretability to actionability ev-
erything is described as syntactical processing and can be described by grammars and
automata. Therefore the model is essentially inline with the observation of L. Floridi [9].

2.3 A Grammar Based on Operator Production Rules

The goal here is to understand, how a grammar can be refined in a way that it enables
machines to make focussed processing, but at the same time without loosing its capac-
ity to describe its own grammar as it is possible for instance with Backus-Naur forms. In

7



Schwardmann | Open Conf Proc 5 (2024) "International FAIR Digital Objects Implementation Summit 2024"

a first step it is therefore helpful to have a look at a particularly simple form of grammar
descriptions, the Greibach Normal Form (GNF)[10] with the resulting expressions of
production rules of the form: Vi → ⊙iVi,1 . . .Vi,ki . It is possible to transform an arbitrary
CFG into this Greibach Normal Form without changing the language described by the
grammar with production rules.

Formally the outcome of GNF production rules is a single terminal followed by a
sequence of non-terminals. The leading terminals of the production outcomes could be
interpreted as operators on the sequence of non-terminals as the operands. Because
this interpretation as grammar with operator production rules is used later, it is put in
the foreground here. Since the Greibach normal form is particularly simple, this leads
to the following results on grammars that produce grammars:

Proposition 1: Operator production rules can be generated by a grammar based
on non-terminals {D,L,O,S}, with startsymbol S, a possibly infinite set of terminals
{⇒,⊙i,Vi} with a range of indexed symbols for operators, non-terminals and terminals
in a described grammar and production rules:

S → ViD
D → ⇒ O
O → ⊙iL
L → Vi | ViL

In the second production rule are two arrows involved. The first arrow is as usual
the grammar rule relation. The second double arrow is in this grammar just a character
that furthermore is a placeholder for the intended character →, only introduced here
to distinguish between the grammar rule arrow and the character for the grammar rule
arrow.

The first three rules, introduced here to fulfill together the Greibach normal form,
can be summarized in a non-Greibach form to S → Vi ⇒ ⊙iL. The last rule generates
a chain of symbols Vi,1 . . .Vi,ki used as variables in the generated grammar, such that
the grammar produces S → Vi ⇒ ⊙iVi,1 . . .Vi,ki The variable and the operator symbols
here can vary across all elements ⊙i and Vi in its terminal sets.

The equivalent grammar given by replacing the double arrow character with the
single arrow character is then able to generate production rules of the form Vi →
⊙iVi,1 . . .Vi,ki that are part of the original grammar in GNF above, such that the start
symbol produces a string that is interpreted as rule in the language of this generated
grammar.

Since all production rules in the described grammar are in Greibach normal form,
the following holds:

Proposition 2: A grammar that generates operator production rules can again be
based on operator production rules.

A machine based on this grammar can read the production rules above and those
of its grammar itself. This is a similarly generic result as the fact that machines based
on Backus-Naur forms can read Backus-Naur forms. Such a grammar has obviously
production rules of a much simpler structure then Backus-Naur, but still can generate
grammars for all possible context free languages.

Its language is based on the terminals in the generating grammar as indexed sym-
bols for operators, non-terminals and terminals in the described grammar, which leads
to:
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Table 1. An operator grammar for JSON

Type Definitions : T → O | A | B | C
Combined Definitions : C → T1 + . . .+ Tk, k ≥ 1
Object Definitions : O → {P1, . . . ,Pk}, k ≥ 1
Key −Value− Pair Definitions : P → [l , T ,Q], l ∈ String
Array Definitions : A → [T1, . . . , Tk], k ≥ 1
Basic Definitions : B → Null | Boolean | String | Number
Quantifiers : Q → ? |!

Proposition 3: The complexity of a grammar given by operator production rules is
only determined by the terminals of its generating grammar.

2.4 A Grammar for JSON Terms

Types and attributes definitions describe, how to process the object in question, for
instance for bit sequences. For processing the description of bit sequences can be the
schema of the data stream given as digital objects in some abstract language like Java
for Parquet [5] or JSON for Avro [6].

Also the description for processing FDO records, attribute definitions and profiles
can be provided as elements in JSON, as it is done for instance in the implementation
of type registries in CORDRA [11] that are based on the data model described as an
outcome of the RDA WG on Data Type Registries [12].

These type and attribute definitions are provided in a language of a CFG that de-
scribes certain JSON records based on subsets of primitive types as terminals and
variables produced from arrays or objects. Other description languages (like XML, . . . )
could be used here as well, but for simplicity and comparability reasons a restriction on
JSON is assumed in the following. Therefore a good starting point to find a more fo-
cussed, but still self describing grammar for types and attribute definitions is to examine
a description of JSON by a grammar.

The description of JSON as a CFG in Table 1 is a modification of the grammar for
JSON types given by Baazizi e.a. in [13].

The variable for key-value-pair definitions consisting of triples describes objects of
keys, values and an obligation as third element in the triple. These triples are collected
to objects, which are sets with the additional property that only one element per key is
allowed.

One important observation here is that the language of this grammar describes
not just words in terminals but sets, because the final terminals of the grammar, like
strings or numbers in the Basic Definitions are themselves sets. These sets can be
refined to subsets. For numbers for instance to intervals or multiplicities for strings by
regular expression. These language refinements can be given by additional rules in
the grammar.

Another observation is that in contrast to the description of Baazisi e.a. each pro-
duction rule here fulfills the requirements of an operator grammar, because all expres-
sions are given by operators applied to a list of variables, where the operators are
alternatives (|), unions (+), tuples ({. . . }) or lists ([. . . ]).
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Table 2. A self describing operator grammar for JSON

Start Definition : S → T | R
Grammar Rule Definitions : R → Vi ⇒ ⊙iL
Type Definitions : T → O | A | B | C
Combined Definitions : C → T1 + . . .+ Tk, k ≥ 1
Object Definitions : O → {P1, . . . ,Pk}, k ≥ 1
Key −Value− Pair Definitions : P → [l , T ,Q], l ∈ String
Array Definitions : A → [T1, . . . , Tk], k ≥ 1
Basic Definitions : B → Null | Boolean | String | Number
Quantifiers : Q → ? | !
Variable String : L → Vi | ViL
Grammar Variable Definitions : Vi → {T , C,R,O,P,A,B,Q,Vi,⊙i} ⊂ String
Grammar Operator Definitions : ⊙i → {|, [. . .], {. . .},+}

This grammar for JSON is still not quite sufficient to allow the description of the
required kind of production rules that then enables the grammar to also describe its
own grammar production rules.

2.4.1 Bootstrapping with a Binding Operator on an Array

However it is possible now to combine the self describing operator based GNF gram-
mars from Proposition 1 with the JSON grammar in GNF above by regarding the pro-
duction rules of this grammar as operator production rules of the form Vi ⇒ ⊙iVi,1 . . .Vi,ki .
For this the arrow character needs to be exchanged again and an additional production
has to be introduced that selects the necessary characters from the set of characters
used for the variables of the JSON grammar. The same needs to be done for the
operators used there to fulfil the requirements for Proposition 1.

Such a grammar can then be enhanced with the additional rules in GNF that de-
scribe the operator production, summarized as S → Vi ⇒ ⊙iVi,1 . . .Vi,ki , alltogether
leading to the production rules given in Table 2.

This new grammar still generates JSON, but after an exchange of the arrow charac-
ter it also includes expressions of the form Vi → ⊙iVi,1 . . .Vi,ki that are able to describe
the grammar production rules, but do not belong to the JSON language itself.

A self describing grammar that stays completely inside JSON can be obtained
however with a small loss of its expressiveness for the JSON language. The grammar
rule production R → Vi ⇒ ⊙iL above describes the replacement of a variable in the
JSON grammar by an operator in the JSON grammar followed by a list of JSON objects.

Such a construction can also be easily mapped to JSON itself using an object like
{[var,Vi, !], [opr,⊙, !], [ops,L, !]} that consists of three mandatory key value pairs, one
for the variable to replace, one for the chosen operation and the last for the list of JSON
objects that also can be provided by a JSON array. Similar to the decomposition for
JSON objects this expression can be decomposed into operator based rules.

Such a JSON compatible grammar description replaces the grammar rule definition
above with the production rule R → {[var,Vi, !], [opr,⊙, !], [ops,L, !]} and the variable
string with an array production L → [V1, . . . ,Vk], k ≥ 1. Additionally var, opr and ops
then need to be removed from the allowed key strings for key-value-pair definitions.

This grammar has a slightly smaller value space for allowed JSON expressions. On
the other hand the whole grammar is self describing within the JSON language itself.
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For practical purposes the advantage to stay completely inside the JSON language
and also to be able to describe rules that generate all used expressions inside this
framework will often be crucial and this small lack of expressiveness within the JSON
language is often neglectable, because only a part of the possible keys in objects is
used anyway.

A JSON grammar with such a production rule definition provides a universal way
to make JSON grammar descriptions machine readable (again with this minor lack of
expressiveness). An immediate consequence is that also the description for JSON
grammar descriptions is readable by machines this way, because the grammar above
is itself an operator grammar, which solves the infinite definition problem and allows
the bootstrapping.

2.5 Simplified Production Rules for FDOs and Types

For the description of FDO records, attribute definitions and profiles, but also for a
bitstream structure or a schema of a structured record usually only specific JSON
expressions are used. These expressions are given by a restriction of the allowed
key strings in JSON objects as well as by subsets of primitive types as terminals and
variables produced from arrays or objects. Because here the value space of possible
JSON expressions is much smaller, the minor reduction of the expressiveness of JSON
doesn’t matter at all and a more focussed processing of these structures is possible for
machines,

One of the goals of the data model in [12] introduced by the RDA WG on Data
Type Registries was exactly to describe, how a set of attributes could look like that is
sufficient for the description of data types.

But binding operators, the essential element to express, how the variables in the
list are coupled together, have been missing in this data model. The same is by the way
also the case in many metadata models described in tables with dependencies given
by hierarchical numbers, like the Dublin Core or DataCite models. All these models are
not sufficient for machine actionability in the sense as described above.

This required rule for binding operators for lists of data types have been first intro-
duced and discussed in a previous paper of the author [14], which was the basis of the
ePIC DTR [15]. Only with these rules on binding operators for lists of subtypes types,
type definitions and types of type definitions become machine readable and therefore
the objects machine actionable.

2.6 Identifiers for Production Rules and Data Type Registries

So far the definition of attributes and types is based on a specified grammar based on
variables and the usual way is to create automata that are able to read and process the
language of this grammar with a local implementation of the variable references.

The DTR WG of RDA had an additional goal in mind with the introduction of data
type registries for which its data model (s.a.). The idea was to define and use types and
attributes in a global way and to introduce global identifiers that are references to and
part of the attribute definitions. For these references an external resolution process
was a precondition, provided by a special automaton called PID resolver.

As a consequence attribute and type definitions become globally machine read-
able. But the global identifiers itself do not prevent multiple definitions of the same
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Table 3. A grammar producing a rule database with identifiers as an extension of an operator grammar

PID Resolution : R → p3(search(I))
Database Update : D → D ∪ {E}
PID Expression : E → [I, s, Tj ]
Unique Identifier : I → I + 1 ∈ Number
Name as String : s → str ∈ String
Identifier Init : I → 0 ∈ Number
Database Init : D → ∅
Operator Productions : Ti → ⊙iRi,1 . . .Ri,ki

types and in order to avoid an explosion of types by redefining the same type in differ-
ent environments the reuse of existing types or schemas for metadata is desired.

Production rules in ordinary grammar descriptions are placeholders or references
for rules that are unique inside the set of rules. However these placeholders are only
used as implicit references inside the grammar description. A reuse of production rules
between grammar descriptions needs explicit references that are part of the grammar
to ensure self descriptiveness.

With the integration of identifiers and their resolution into the grammar the rules can
be expressed as rules on these identifiers, and if the identifiers are globally unique, the
rules of grammars can be given in a decentralized way. An automaton that works on
this kind of grammar expressions, on the language describing the grammar based on
identifiers, as it is the case for types, can work on global and decentralized presented
grammar rules.

Since global machine actionability requires a (syntactical) processing of the gram-
mar, the references above have to become part of the grammar. This can be described
as an additional addon to generic grammar descriptions, for simplicity reasons in Table
3 shown for Greibach normal forms or operator production grammars.

These identifiers become then ubiquitous in the grammar description. They ref-
erence all incomplete parse trees (parse trees with also non-terminals as leaves) in-
cluding therefore all production rules and each single node inside any parse tree of the
grammar in a globally unique way .

The productions of the underlying grammar are described as above as production
in Greibach normal form. This grammar stores all expressions available by the operator
productions together with a unique identifier and a name for semantical bindings into
a simple database, where the triples can be retrieved with a search function on the
identifier and the expression by a projection on the third entry in the triple.

In order to implement a global and decentralized automaton that reads this gram-
mar, the numbers needs to be separated into different number spaces for instance by
requiring certain prefixes for the numbers used in a local implementation. This requires
then also the implementation of a global search engine for identifiers.

An application of production rules on non-terminals in existing identified expres-
sions or incomplete parse trees leads to new, possibly incomplete, parse trees, which
together with a new identifer can be stored in the database.

Consequently also a global reuse of existing and identified type and attribute def-
initions works on a machine level, if the identifier references and their resolution are
integrated into the grammar description of attribute definitions.
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2.6.1 Grafting in Grammars with Identifiers

Instead of production rules complete existing and identified, possibly incomplete, parse
trees can be applied here. This grafting of trees is possible if the root variable of the
grafted tree, here an identifier, is the same as the identifier representing the variable at
the leaves of the incomplete parse trees that becomes extended by grafting.

Grafting is recursive: the building of deeper structures of incomplete parse trees
can be repeated until all leaves are (identified) terminals. Parse trees can then be
defined from incomplete parse trees, where for each identified non-terminal at the
leaves of the tree a new parse tree (or production rule) is chosen starting with that
non-terminal.

This process provides an additional unambiguous labelling of parse trees beside
the usually used ambiguous labelling by non-terminals. If the grammar itself is unam-
biguous, the references of parse trees can also be used for each word in the language
of its underlying grammar as an additional consequence. For ambiguous grammars
equal words may have different identifiers.

From the viewpoint of the context free language these additional non-terminals
for the production of identifiers and their resolution are useless symbols that usually
would be deleted for simplification of the grammar. Here however they are exactly
the additional ingredients that make the parse trees based on identifiers readable by
globally acting machines via the resolution.

If terminals, non-terminals and operators are provided with identifiers, the produc-
tion rules can be represented as collections based on identifiers, as it was suggested in
the RDA Recommendation on Research Data Collections [16], and the grammar itself
becomes then a collection of collections.

2.7 Self Describing Structures in Existing Attribute Registries

Beside the data model of "PID-InfoType" and "PID-BasicInfoType" a slightly smaller
data model for the definition of FDO types was introduced in a new ePIC DTR that
uses the schema HDL:21.T11969/87efe6353f9d42f690e3.

That the "PID-InfoType" schema has the necessary complexity to describe this
similar complex schema can be shown by the description of the FDO-type-definition in
HDL:21.T11148/04bc5ec4f8bb489d7962 in the ePIC DTR for testing [17]. In a simi-
lar way also the "PID-InfoType" and "PID-BasicInfoType" could be described by "PID-
InfoType".

In this DTR the "subSchemaRelation" key in the substructure "representationsAnd-
Semantics" is a necessary extension of the DTR working group data model of RDA to
take the role of the operator description. The operands are given by an array of refer-
ences provided by an attribute with key "properties". And the identifier represents the
variable that can be replaced by this operator binding these operands.

Via a REST service with an according entry point at [18] the definition for FDO-
Types can be used to derive a schema at HDL:21.T11148/b72cf35b541e2ef79830.
This schema then can validate the correctness of objects in the DTR representing
FDO types during creation.

This way a machine is able to read the grammar and to process the language
for the definition objects in order to finally validate the objects itself. This machine is
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also able to process the grammar that describes this grammar, because these two
grammars are already the same.

A much smaller self describing data model based on the operator grammar at Table
2 is given in the DTR above by HDL:21.T11969/5c211d1611a829aa06c3 as "Opera-
torGrammarRule".

The definition is based on a schema HDL:21.T11969/2bf0a35f84cd895c511b. "Op-
eratorGrammarRule" can be derived from its own type definition, where list or tuple
validation are used on the variables operators are applied on.

3. Conclusion and Outlook

This theoretical approach leads to a couple of open standardization and implementa-
tion possibilities, for which a decision is needed. Topics for needed decisions on the
implementation of FDOs are provided here in a brief summary together with a sugges-
tion for such a decision. More details can be found in the text above.

• Key defines value space: In attributes the key provides a reference to an at-
tribute definition, which is the type description of the value and an FDO.

• Profile as list of attributes: A generic basic structure of FDO profiles is given
as a list of mandatory or optional attribute definitions that can be augmented by
names as aliases in FDO records.

• O.Profile: A generic attribute key is chosen that describes this profile consisting
of at least one attribute with key 0.Profile and a profile as value.

• A normalisation operation: For each FDO implementation a mapping of the
FDO record and the FDO profile in a generic basic structure is provided.

• 0.ContentType: For the type of the bit sequences in data FDOs the additional
generic attribute 0.ContentType is chosen.

• Discrimination of references: To distinguish between an inline value or a refer-
ence to a value according to the type or a reference to another type attribute in
the FDO record the prefixes "FDO-REF:" or "FDO-ATTR:" are used in the keys of
attributes.

• Binding operators: A description of the kind of coupling of sub types is an in-
tegral part of recursive type definitions. The attributes that are used to describe
operator and operands need to be marked and a minimal set of operators should
be provided by all FDO implementations.

Of particular interest is the question of how to avoid an explosion of types. With
the global identification a parallel definition of equal types is not necessary and can
be avoided by the search function. But similarity of types requires a knowledge about
mappings between type definitions, often called crosswalks. This is usually covered by
direct mappings between types, which is cumbersome and in many cases insufficient.

In the theoretical approach above types are defined by grammars. It seems that a
mapping between languages based on grammars or even directly between grammars
could provide a better understanding of the theoretical background of crosswalks in
order to find more generic solutions. A focus on a theoretical understanding of these
mappings will be of future interest.
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