Integrated Sustainability Assessment of a Residential Heat Pump System

Approach, Data Requirements, and Integration of a Dynamic Electricity Mix

Authors

DOI:

https://doi.org/10.52825/isec.v1i.1157

Keywords:

Life Cycle Assessment, Heat Pump, Solar Thermal System, Electricity Mix

Abstract

As there is currently a lack of reliable guidance for investors to make the most sustainable choice when it comes to different renewable heating technologies for residential buildings, this contribution presents a methodological approach for a comprehensive comparison, while also addressing data requirements. A focus point of the methodology development and the sustainability assessment lies on the integration of a dynamic electricity mix to account for the continuous decarbonization in an energy grid that is more and more based on renewables. Its influence on the final environmental impact results of the presented exemplary system combining a solar thermal collector and an air source heat pump is assessed. The results indicate a significant influence of the electricity mix on the carbon footprint (- 48%) of the provided heat. The resource use is only slightly changed (+ 3%).

Downloads

Download data is not yet available.

References

Umweltbundesamt, "Erneuerbare Energien in Zahlen", Available: https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen. (Accessed: 23/02/24).

Bundesverband Wärmepumpe e.V., “Branchenstudie 2023: Marktentwicklung - Prognose - Handlungsempfehlungen.”, Berlin, Germany, 2023.

"Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen: Deutsche und Englische Fassung", DIN EN ISO 14044, 2006.

"Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen: Deutsche und Englische Fassung", DIN EN ISO 14040, 2009.

European Commission, Joint Research Centre, and Institute for Environment and Sustainability, "International reference life cycle data system (ILCD) handbook: Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors", Luxembourg, Publications Office, 2011.

J. Brandes, M. Haun, D. Wrede, P. Jürgens, C. Kost, and H.-M. Henning, “Wege zu einem klimaneutralen Energiesystem: Die deutsche Energiewende im Kontext gesellschaftlicher Verhaltensweisen” Update November 2021: Klimaneutralität 2045, Fraunhofer Institut für Solare Energiesysteme ISE, Freiburg, 2021.

B. Burger, "Energy-Charts", Available: https://www.energy-charts.info/index.html?l=de&c=DE. (Accessed: 23/02/24).

F. Bumann, F. Panitz, and C. Felsmann, “Ganzheitliche Bewertung von Wärmepumpensystemen”, Technische Universität Dresden, 2023.

B. Greening and A. Azapagic, “Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK”, Energy, vol. 39, no. 1, pp. 205–217, 2012.

G. Ioannis, “Environmental Performance Assessment of Heat Pumps” Masterarbeit, School of Science and Technology, International Hellenic University, Thessaloniki, Griechenland, 2014.

T. Kägi, L. Waldburger, C. Kern, G. Roberts, M. Zschokke, F. Conte, and L. Weber, “Life Cycle Inventories of Heating Systems: Heat from natural gas, biomethane, district heating, electric heating, heat pumps, PVT, wood, cogeneration”, Carbotech AG, Zürich, 2021.

A. C. Violante, F. Donato, G. Guidi, and M. Proposito, “Comparative life cycle assessment of the ground source heat pump vs air source heat pump”, Renewable Energy, vol. 188, pp. 1029–1037, 2022.

G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, and B. P. Weidema, “The ecoinvent database version 3 (part I): overview and methodology”, Int J Life Cycle Assess, vol. 21, no. 9, pp. 1218–1230, 2016.

H. Bahlawan, W.-R. Poganietz, P. R. Spina, and M. Venturini, “Cradle-to-gate life cycle assessment of energy systems for residential applications by accounting for scaling effects”, Applied Thermal Engineering, vol. 171, p. 115062, 2020.

G. Naumann, E. Schropp, and M. Gaderer, “Life Cycle Assessment of an Air-Source Heat Pump and a Condensing Gas Boiler Using an Attributional and a Consequential Approach”, Procedia CIRP, vol. 105, pp. 351–356, 2022.

Downloads

Published

2024-04-19

How to Cite

Fischer, M., Herceg, S., & Weiß, K.-A. (2024). Integrated Sustainability Assessment of a Residential Heat Pump System: Approach, Data Requirements, and Integration of a Dynamic Electricity Mix . International Sustainable Energy Conference - Proceedings, 1. https://doi.org/10.52825/isec.v1i.1157

Conference Proceedings Volume

Section

Spatial Energy Planning for Energy Transition

Funding data